2d_constraints.gms 146 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
$ontext
This file is part of Backbone.

Backbone is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Backbone is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Backbone.  If not, see <http://www.gnu.org/licenses/>.
$offtext

18

19
* =============================================================================
20
* --- Constraint Equation Definitions -----------------------------------------
21
22
23
24
* =============================================================================

* --- Energy Balance ----------------------------------------------------------

25
26
27
q_balance(gn(grid, node), msft(m, s, f, t)) // Energy/power balance dynamics solved using implicit Euler discretization
    ${  not p_gn(grid, node, 'boundAll')
        } ..
28
29
30
31

    // The left side of the equation is the change in the state (will be zero if the node doesn't have a state)
    + p_gn(grid, node, 'energyStoredPerUnitOfState')${gn_state(grid, node)} // Unit conversion between v_state of a particular node and energy variables (defaults to 1, but can have node based values if e.g. v_state is in Kelvins and each node has a different heat storage capacity)
        * [
32
33
            + v_state(grid, node, s, f+df_central(f,t), t)                   // The difference between current
            - v_state(grid, node, s+ds_state(grid,node,s,t), f+df(f,t+dt(t)), t+dt(t))       // ... and previous state of the node
34
35
36
37
38
39
40
41
            ]

    =E=

    // The right side of the equation contains all the changes converted to energy terms
    + p_stepLength(m, f, t) // Multiply with the length of the timestep to convert power into energy
        * (
            // Self discharge out of the model boundaries
42
            - p_gn(grid, node, 'selfDischargeLoss')${ gn_state(grid, node) }
43
                * v_state(grid, node, s, f+df_central(f,t), t) // The current state of the node
44
45

            // Energy diffusion from this node to neighbouring nodes
46
            - sum(gnn_state(grid, node, to_node),
47
                + p_gnn(grid, node, to_node, 'diffCoeff')
48
                    * v_state(grid, node, s, f+df_central(f,t), t)
49
50
51
                ) // END sum(to_node)

            // Energy diffusion from neighbouring nodes to this node
52
            + sum(gnn_state(grid, from_node, node),
53
                + p_gnn(grid, from_node, node, 'diffCoeff')
54
                    * v_state(grid, from_node, s, f+df_central(f,t), t) // Incoming diffusion based on the state of the neighbouring node
55
56
57
                ) // END sum(from_node)

            // Controlled energy transfer, applies when the current node is on the left side of the connection
58
            - sum(gn2n_directional(grid, node, node_),
59
                + (1 - p_gnn(grid, node, node_, 'transferLoss')) // Reduce transfer losses
60
                    * v_transfer(grid, node, node_, s, f, t)
61
                + p_gnn(grid, node, node_, 'transferLoss') // Add transfer losses back if transfer is from this node to another node
62
                    * v_transferRightward(grid, node, node_, s, f, t)
63
64
65
                ) // END sum(node_)

            // Controlled energy transfer, applies when the current node is on the right side of the connection
66
            + sum(gn2n_directional(grid, node_, node),
67
                + v_transfer(grid, node_, node, s, f, t)
68
                - p_gnn(grid, node_, node, 'transferLoss') // Reduce transfer losses if transfer is from another node to this node
69
                    * v_transferRightward(grid, node_, node, s, f, t)
70
71
72
73
                ) // END sum(node_)

            // Interactions between the node and its units
            + sum(gnuft(grid, node, unit, f, t),
74
                + v_gen(grid, node, unit, s, f, t) // Unit energy generation and consumption
75
                )
76
77

            // Spilling energy out of the endogenous grids in the model
78
            - v_spill(grid, node, s, f, t)${node_spill(node)}
79
80

            // Power inflow and outflow timeseries to/from the node
81
            + ts_influx_(grid, node, f, t, s)   // Incoming (positive) and outgoing (negative) absolute value time series
82
83

            // Dummy generation variables, for feasibility purposes
84
85
            + vq_gen('increase', grid, node, s, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
            - vq_gen('decrease', grid, node, s, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
86
    ) // END * p_stepLength
87
;
88
89

* --- Reserve Demand ----------------------------------------------------------
90
91
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.
92

93
q_resDemand(restypeDirectionNode(restype, up_down, node), sft(s, f, t))
94
95
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
96
                  and sft_realized(s, f, t)]
97
        } ..
98

99
100
    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, up_down, node, unit)},
101
        + v_reserve(restype, up_down, node, unit, s, f+df_reserves(node, restype, f, t), t)
102
103
104
105
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
106
107
        ) // END sum(nuft)

108
    // Reserve provision from other reserve categories when they can be shared
109
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, up_down, restype)},
110
        + v_reserve(restype_, up_down, node, unit, s, f+df_reserves(node, restype_, f, t), t)
111
            * p_nuRes2Res(node, unit, restype_, up_down, restype)
112
113
114
115
116
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
117
118
        ) // END sum(nuft)

119
    // Reserve provision to this node via transfer links
120
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},
121
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
122
            * v_resTransferRightward(restype, up_down, node_, node, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
123
        ) // END sum(gn2n_directional)
124
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},
125
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
126
            * v_resTransferLeftward(restype, up_down, node, node_, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
127
128
129
130
131
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves
132
    + ts_reserveDemand(restype, up_down, node, f, t)${p_nReserves(node, restype, 'use_time_series')}
133
134
    + p_nReserves(node, restype, up_down)${not p_nReserves(node, restype, 'use_time_series')}

135
136
    // Reserve demand increase because of units
    + sum(nuft(node, unit, f, t)${p_nuReserves(node, unit, restype, 'reserve_increase_ratio')}, // Could be better to have 'reserve_increase_ratio' separately for up and down directions
137
        + sum(gnu(grid, node, unit), v_gen(grid, node, unit, s, f, t)) // Reserve sets and variables are currently lacking the grid dimension...
138
139
140
            * p_nuReserves(node, unit, restype, 'reserve_increase_ratio')
        ) // END sum(nuft)

141
    // Reserve provisions to another nodes via transfer links
142
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
143
        + v_resTransferRightward(restype, up_down, node, node_, s, f+df_reserves(node, restype, f, t), t)
144
        ) // END sum(gn2n_directional)
145
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
146
        + v_resTransferLeftward(restype, up_down, node_, node, s, f+df_reserves(node, restype, f, t), t)
147
148
149
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
150
151
    - vq_resDemand(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
152
;
153

154
155
156
157
* --- N-1 Reserve Demand ----------------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

158
q_resDemandLargestInfeedUnit(grid, restypeDirectionNode(restype, 'up', node), unit_fail(unit_), sft(s, f, t))
159
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
160
        and gn(grid, node)
161
162
163
        and not [ restypeReleasedForRealization(restype)
            and ft_realized(f, t)
            ]
164
        and p_nuReserves(node, unit_, restype, 'portion_of_infeed_to_reserve')
165
        } ..
166

167
168
    // Reserve provision by capable units on this node excluding the failing one
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'up', node, unit) and (ord(unit_) ne ord(unit))},
169
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
170
171
172
173
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
174
175
176
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
177
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'up', restype)},
178
        + v_reserve(restype_, 'up', node, unit, s, f+df_reserves(node, restype_, f, t), t)
179
            * p_nuRes2Res(node, unit, restype_, 'up', restype)
180
181
182
183
184
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
185
186
187
188
189
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node_, node)},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
190
            * v_resTransferRightward(restype, 'up', node_, node, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
191
192
193
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node_, node)},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
194
            * v_resTransferLeftward(restype, 'up', node, node_, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
195
196
197
198
        ) // END sum(gn2n_directional)

    =G=

199
    // Demand for reserves due to a large unit that could fail
200
    + v_gen(grid,node,unit_,s,f,t) * p_nuReserves(node, unit_, restype, 'portion_of_infeed_to_reserve')
201
202

    // Reserve provisions to another nodes via transfer links
203
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
204
        + v_resTransferRightward(restype, 'up', node, node_, s, f+df_reserves(node, restype, f, t), t)
205
        ) // END sum(gn2n_directional)
206
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
207
        + v_resTransferLeftward(restype, 'up', node_, node, s, f+df_reserves(node, restype, f, t), t)
208
209
210
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
211
212
    - vq_resDemand(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
213
;
214

215
* --- N-1 Upward reserve demand due to a possibility that an interconnector that is transferring power to the node fails -------------------------------------------------
216
217
218
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

219
q_resDemandLargestInfeedTransfer(grid, restypeDirectionNode(restype, 'up', node), node_fail, sft(s, f, t))
220
221
222
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
                  and sft_realized(s, f, t)]
223
        and p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
224
        and p_nReserves(node, restype, 'LossOfTrans')
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        } ..

    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'up', node, unit)},
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'up', restype)},
        + v_reserve(restype_, 'up', node, unit, s, f+df_reserves(node, restype_, f, t), t)
            * p_nuRes2Res(node, unit, restype_, 'up', restype)
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
248
    // SHOULD THE node_fail BE EXCLUDED?
249
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node_, node)},
250
251
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
            * v_resTransferRightward(restype, 'up', node_, node, s, f+df_reserves(node_, restype, f, t), t)
252
            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
253
        ) // END sum(gn2n_directional)
254
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node_, node)},
255
256
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
            * v_resTransferLeftward(restype, 'up', node, node_, s, f+df_reserves(node_, restype, f, t), t)
257
            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
258
259
260
261
        ) // END sum(gn2n_directional)

    =G=

262
263
    // Demand for reserves due to potential interconnector failures
    + p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve')
264
        * v_transferRightward(grid, node_fail, node, s, f, t)
265
    + p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
266
        * v_transferLeftward(grid, node, node_fail, s, f, t)
267
268

    // Reserve provisions to another nodes via transfer links
269
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_)},
270
          // Reserve transfers to other nodes increase the reserve need of the present node
271
        + v_resTransferRightward(restype, 'up', node, node_, s, f+df_reserves(node, restype, f, t), t)
272
            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
273
        ) // END sum(gn2n_directional)
274
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node, node_)},
275
          // Reserve transfers to other nodes increase the reserve need of the present node
276
        + v_resTransferLeftward(restype, 'up', node_, node, s, f+df_reserves(node, restype, f, t), t)
277
            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
278
279
280
281
282
283
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
    - vq_resDemand(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
;
284

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
* --- N-1 Downward reserve demand due to a possibility that an interconnector that is transferring power to the node fails -------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

q_resDemandLargestInfeedTransfer2(grid, restypeDirectionNode(restype, 'down', node), node_fail, sft(s, f, t))
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
                  and sft_realized(s, f, t)]
        and p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
        and p_nReserves(node, restype, 'LossOfTrans')
        } ..

    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'down', node, unit)},
        + v_reserve(restype, 'down', node, unit, s, f+df_reserves(node, restype, f, t), t)
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
        ) // END sum(nuft)
305

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    // Reserve provision from other reserve categories when they can be shared
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'down', restype)},
        + v_reserve(restype_, 'down', node, unit, s, f+df_reserves(node, restype_, f, t), t)
            * p_nuRes2Res(node, unit, restype_, 'down', restype)
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
    // SHOULD THE node_fail BE EXCLUDED?
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'down', node_, node)},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
            * v_resTransferRightward(restype, 'down', node_, node, s, f+df_reserves(node_, restype, f, t), t)
            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'down', node_, node)},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
            * v_resTransferLeftward(restype, 'down', node, node_, s, f+df_reserves(node_, restype, f, t), t)
            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves due to potential interconnector failures
    + p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve')
ran li's avatar
ran li committed
334
        * v_transferLeftward(grid, node_fail, node, s, f, t)
335
    + p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
ran li's avatar
ran li committed
336
        * v_transferRightward(grid, node, node_fail, s, f, t)
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

    // Reserve provisions to another nodes via transfer links
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_)},
          // Reserve transfers to other nodes increase the reserve need of the present node
        + v_resTransferRightward(restype, 'down', node, node_, s, f+df_reserves(node, restype, f, t), t)
            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'down', node, node_)},
          // Reserve transfers to other nodes increase the reserve need of the present node
        + v_resTransferLeftward(restype, 'down', node_, node, s, f+df_reserves(node, restype, f, t), t)
            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
    - vq_resDemand(restype, 'down', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'down', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
;
354
355
* --- Maximum Downward Capacity -----------------------------------------------

356
q_maxDownward(gnu(grid, node, unit), msft(m, s, f, t))
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    ${  gnuft(grid, node, unit, f, t)
        and {
            [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
                and sum(restype, nuRescapable(restype, 'down', node, unit)) // downward reserves
                ]
            // NOTE!!! Could be better to form a gnuft_reserves subset?
            or [ // the unit has an online variable
                uft_online(unit, f, t)
                and [
                    (unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeGen')) // generators with a min. load
                    or p_gnu(grid, node, unit, 'maxCons') // or consuming units with an online variable
                    ]
                ] // END or
            or [ // consuming units with investment possibility
                gnu_input(grid, node, unit)
                and [unit_investLP(unit) or unit_investMIP(unit)]
                ]
        }} ..

376
    // Energy generation/consumption
377
    + v_gen(grid, node, unit, s, f, t)
378
379

    // Considering output constraints (e.g. cV line)
380
381
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
382
            * v_gen(grid_output, node_, unit, s, f, t)
383
384
385
        ) // END sum(gngnu_constrainedOutputRatio)

    // Downward reserve participation
386
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
387
        + v_reserve(restype, 'down', node, unit, s, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
388
389
390
391
392
393
        ) // END sum(nuRescapable)

    =G= // Must be greater than minimum load or maximum consumption  (units with min-load and both generation and consumption are not allowed)

    // Generation units, greater than minload
    + p_gnu(grid, node, unit, 'unitSizeGen')
394
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
395
396
397
398
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [ // Online variables should only be generated for units with restrictions
399
400
            + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f+df_central(f,t), t)} // LP online variant
            + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f+df_central(f,t), t)} // MIP online variant
401
402
            ] // END v_online

403
404
405
406
    // Units in run-up phase neet to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
407
408
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
409
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
410
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
411
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
412
                    ]
413
                    * p_uCounter_runUpMin(unit, counter)
414
415
416
417
418
419
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)

    // Units in shutdown phase need to keep up with the shutdown rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
420
421
422
423
424
425
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                ]
426
                * p_uCounter_shutdownMin(unit, counter)
427
            ) // END sum(shutdownCounter)
428

429
430
431
432
433
    // Consuming units, greater than maxCons
    // Available capacity restrictions
    - p_unit(unit, 'availability')
        * [
            // Capacity factors for flow units
434
            + sum(flowUnit(flow, unit),
435
                + ts_cf_(flow, node, f, t, s)
436
437
438
439
440
441
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxCons')${not uft_online(unit, f, t)} // Use initial maximum if no online variables
442
443
444
445
            // !!! TEMPORARY SOLUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
            + [
                + p_gnu(grid, node, unit, 'unitSizeCons')
                + p_gnu(grid, node, unit, 'maxCons')${not p_gnu(grid, node, unit, 'unitSizeCons') > 0}
446
                    / ( p_unit(unit, 'unitCount') + 1${not p_unit(unit, 'unitCount') > 0} )
447
448
                ]
            // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
449
                * [
450
                    // Capacity online
451
452
                    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
                    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
453
454
455
456
457
458
459
460

                    // Investments to additional non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f, t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)} // NOTE! v_invest_LP also for consuming units is positive
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)} // NOTE! v_invest_MIP also for consuming units is positive
                        ) // END sum(t_invest)
461
462
                    ] // END * p_gnu(unitSizeCons)
            ] // END * p_unit(availability)
463
;
464
465
466

* --- Maximum Upwards Capacity ------------------------------------------------

467
q_maxUpward(gnu(grid, node, unit), msft(m, s, f, t))
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    ${  gnuft(grid, node, unit, f, t)
        and {
            [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
                and sum(restype, nuRescapable(restype, 'up', node, unit)) // upward reserves
                ]
            or [
                uft_online(unit, f, t) // or the unit has an online variable
                and [
                    [unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeCons')] // consuming units with min_load
                    or [p_gnu(grid, node, unit, 'maxGen')]                          // generators with an online variable
                    ]
                ]
            or [
                gnu_output(grid, node, unit) // generators with investment possibility
                and (unit_investLP(unit) or unit_investMIP(unit))
                ]
        }}..

486
    // Energy generation/consumption
487
    + v_gen(grid, node, unit, s, f, t)
488
489
490
491

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
492
            * v_gen(grid_output, node_, unit, s, f, t)
493
494
495
        ) // END sum(gngnu_constrainedOutputRatio)

    // Upwards reserve participation
496
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
497
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
498
499
500
501
502
        ) // END sum(nuRescapable)

    =L= // must be less than available/online capacity

    // Consuming units
503
    - p_gnu(grid, node, unit, 'unitSizeCons')
504
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
505
506
507
508
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [
509
510
            + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
            + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
511
512
513
514
515
516
517
            ] // END * p_gnu(unitSizeCons)

    // Generation units
    // Available capacity restrictions
    + p_unit(unit, 'availability') // Generation units are restricted by their (available) capacity
        * [
            // Capacity factor for flow units
518
            + sum(flowUnit(flow, unit),
519
                + ts_cf_(flow, node, f, t, s)
520
521
522
523
524
525
526
527
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxGen')${not uft_online(unit, f, t)} // Use initial maxGen if no online variables
            + p_gnu(grid, node, unit, 'unitSizeGen')
                * [
528
                    // Capacity online
529
530
                    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f ,t)}
                    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
531
532
533
534
535
536
537
538

                    // Investments to non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f ,t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)}
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                        ) // END sum(t_invest)
539
540
                    ] // END * p_gnu(unitSizeGen)
            ] // END * p_unit(availability)
541

542
543
544
545
    // Units in run-up phase neet to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
546
547
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
548
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
549
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
550
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
551
                    ]
552
                    * p_uCounter_runUpMax(unit, counter)
553
554
555
556
557
558
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)

    // Units in shutdown phase need to keep up with the shutdown rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
559
560
561
562
563
564
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                ]
565
                * p_uCounter_shutdownMax(unit, counter)
566
            ) // END sum(shutdownCounter)
567
;
568

569
570
* --- Reserve Provision of Units with Investments -----------------------------

571
572
573
574
575
576
577
q_reserveProvision(nuRescapable(restypeDirectionNode(restype, up_down, node), unit), sft(s, f, t))
    ${  ord(t) <= tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and nuft(node, unit, f, t)
        and (unit_investLP(unit) or unit_investMIP(unit))
        and not ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)
        } ..

578
    + v_reserve(restype, up_down, node, unit, s, f+df_reserves(node, restype, f, t), t)
579
580
581
582
583
584
585
586
587
588
589
590
591

    =L=

    + p_nuReserves(node, unit, restype, up_down)
        * [
            + sum(grid, p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )  // Reserve sets and variables are currently lacking the grid dimension...
            + sum(t_invest(t_)${ ord(t_)<=ord(t) },
                + v_invest_LP(unit, t_)${unit_investLP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                ) // END sum(t_)
            ]
592
593
594
595
        * p_unit(unit, 'availability') // Taking into account availability...
        * [
            // ... and capacity factor for flow units
            + sum(flowUnit(flow, unit),
596
                + ts_cf_(flow, node, f, t, s)
597
598
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
599
600
601
            ] // How to consider reserveReliability in the case of investments when we typically only have "realized" time steps?
;

602
603
* --- Unit Startup and Shutdown -----------------------------------------------

604
605
606
607
q_startshut(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        }..

608
    // Units currently online
609
610
    + v_online_LP (unit, s, f+df_central(f,t), t)${uft_onlineLP (unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
611
612

    // Units previously online
613
    // The same units
614
    - v_online_LP (unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
615
                                                             and not uft_aggregator_first(unit, f, t) } // This reaches to tFirstSolve when dt = -1
616
    - v_online_MIP(unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
617
618
619
620
                                                             and not uft_aggregator_first(unit, f, t) }

    // Aggregated units just before they are turned into aggregator units
    - sum(unit_${unitAggregator_unit(unit, unit_)},
621
622
        + v_online_LP (unit_, s, f+df(f,t+dt(t)), t+dt(t))${uft_onlineLP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
        + v_online_MIP(unit_, s, f+df(f,t+dt(t)), t+dt(t))${uft_onlineMIP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
623
        )${uft_aggregator_first(unit, f, t)} // END sum(unit_)
624

625
626
    =E=

627
    // Unit startup and shutdown
628

629
    // Add startup of units dt_toStartup before the current t (no start-ups for aggregator units before they become active)
630
    + sum(unitStarttype(unit, starttype),
631
        + v_startup_LP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
632
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
633
        + v_startup_MIP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
634
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
635
        )${not [unit_aggregator(unit) and ord(t) + dt_toStartup(unit, t) <= tSolveFirst + p_unit(unit, 'lastStepNotAggregated')]} // END sum(starttype)
636

637
638
639
640
    // NOTE! According to 3d_setVariableLimits,
    // cannot start a unit if the time when the unit would become online is outside
    // the horizon when the unit has an online variable
    // --> no need to add start-ups of aggregated units to aggregator units
641

642
    // Shutdown of units at time t
643
644
645
646
    - v_shutdown_LP(unit, s, f, t)
        ${ uft_onlineLP(unit, f, t) }
    - v_shutdown_MIP(unit, s, f, t)
        ${ uft_onlineMIP(unit, f, t) }
647
;
648

649
*--- Startup Type -------------------------------------------------------------
650
// !!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
651
652
653
// This formulation doesn't work as intended when unitCount > 1, as one recent
// shutdown allows for multiple hot/warm startups on subsequent time steps.
// Pending changes.
654

655
656
657
658
q_startuptype(ms(m, s), starttypeConstrained(starttype), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and unitStarttype(unit, starttype)
        } ..
659
660

    // Startup type
661
662
    + v_startup_LP(unit, starttype, s, f, t)${ uft_onlineLP(unit, f, t) }
    + v_startup_MIP(unit, starttype, s, f, t)${ uft_onlineMIP(unit, f, t) }
663
664
665
666

    =L=

    // Subunit shutdowns within special startup timeframe
667
668
669
670
671
672
673
    + sum(unitCounter(unit, counter)${  dt_starttypeUnitCounter(starttype, unit, counter)
                                        and t_active(t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
                                        },
        + v_shutdown_LP(unit, s, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)) }
        + v_shutdown_MIP(unit, s, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)) }
674
675
676
        ) // END sum(counter)

    // NOTE: for aggregator units, shutdowns for aggregated units are not considered
677
;
678

679

680
681
*--- Online Limits with Startup Type Constraints and Investments --------------

682
683
684
685
686
687
688
689
690
q_onlineLimit(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and {
            p_unit(unit, 'minShutdownHours')
            or p_u_runUpTimeIntervals(unit)
            or unit_investLP(unit)
            or unit_investMIP(unit)
        }} ..

691
    // Online variables
692
693
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f ,t)}
694
695
696
697
698
699

    =L=

    // Number of existing units
    + p_unit(unit, 'unitCount')

700
    // Number of units unable to become online due to restrictions
701
702
703
704
705
706
707
    - sum(unitCounter(unit, counter)${  dt_downtimeUnitCounter(unit, counter)
                                        and t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                        },
        + v_shutdown_LP(unit, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
        + v_shutdown_MIP(unit, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
708
709
710
        ) // END sum(counter)

    // Number of units unable to become online due to restrictions (aggregated units in the past horizon or if they have an online variable)
711
    - sum(unitAggregator_unit(unit, unit_),
712
713
714
715
716
717
718
        + sum(unitCounter(unit, counter)${  dt_downtimeUnitCounter(unit, counter)
                                            and t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                            },
            + v_shutdown_LP(unit_, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                ${ uft_onlineLP_withPrevious(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
            + v_shutdown_MIP(unit_, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                ${ uft_onlineMIP_withPrevious(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
719
720
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
721
722
723

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
724
725
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
726
727
728
        ) // END sum(t_invest)
;

729
730
731
732
*--- Both q_offlineAfterShutdown and q_onlineOnStartup work when there is only one unit.
*    These equations prohibit single units turning on and off at the same time step.
*    Unfortunately there seems to be no way to prohibit this when unit count is > 1.
*    (it shouldn't be worthwhile anyway if there is a startup cost, but it can fall within the solution gap).
733
734
735
736
q_onlineOnStartUp(s_active(s), uft_online(unit, f, t))
    ${  sft(s, f, t)
        and sum(starttype, unitStarttype(unit, starttype))
        }..
737
738

    // Units currently online
739
740
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
741
742
743
744

    =G=

    + sum(unitStarttype(unit, starttype),
745
        + v_startup_LP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
746
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
747
        + v_startup_MIP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
748
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
749
750
751
      ) // END sum(starttype)
;

752
753
754
755
q_offlineAfterShutdown(s_active(s), uft_online(unit, f, t))
    ${  sft(s, f, t)
        and sum(starttype, unitStarttype(unit, starttype))
        }..
756

757
758
759
760
761
    // Number of existing units
    + p_unit(unit, 'unitCount')

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
762
763
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
764
765
        ) // END sum(t_invest)

766
    // Units currently online
767
768
    - v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    - v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
769
770
771

    =G=

772
773
774
775
    + v_shutdown_LP(unit, s, f, t)
        ${ uft_onlineLP(unit, f, t) }
    + v_shutdown_MIP(unit, s, f, t)
        ${ uft_onlineMIP(unit, f, t) }
776
777
;

778
779
*--- Minimum Unit Uptime ------------------------------------------------------

780
781
782
783
q_onlineMinUptime(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and  p_unit(unit, 'minOperationHours')
        } ..
784
785

    // Units currently online
786
787
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
788
789
790
791

    =G=

    // Units that have minimum operation time requirements active
792
793
794
    + sum(unitCounter(unit, counter)${  dt_uptimeUnitCounter(unit, counter)
                                        and t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) // Don't sum over counters that don't point to an active time step
                                        },
795
        + sum(unitStarttype(unit, starttype),
796
            + v_startup_LP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
797
                ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
798
            + v_startup_MIP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
799
                ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
800
            ) // END sum(starttype)
801
802
803
        ) // END sum(counter)

    // Units that have minimum operation time requirements active (aggregated units in the past horizon or if they have an online variable)
Topi Rasku's avatar
Topi Rasku committed
804
    + sum(unitAggregator_unit(unit, unit_),
805
806
807
        + sum(unitCounter(unit, counter)${  dt_uptimeUnitCounter(unit, counter)
                                            and t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) // Don't sum over counters that don't point to an active time step
                                            },
808
            + sum(unitStarttype(unit, starttype),
809
                + v_startup_LP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
810
                    ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
811
                + v_startup_MIP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
812
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
813
814
815
                ) // END sum(starttype)
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
816
817
;

818
819
* --- Cyclic Boundary Conditions for Online State -----------------------------

820
821
822
823
824
q_onlineCyclic(uss_bound(unit, s_, s), m)
    ${  ms(m, s_)
        and ms(m, s)
        and tSolveFirst = mSettings(m, 't_start')
        }..
825
826
827
828

    // Initial value of the state of the unit at the start of the sample
    + sum(mst_start(m, s, t),
        + sum(sft(s, f, t),
Topi Rasku's avatar
Topi Rasku committed
829
830
831
832
            + v_online_LP(unit, s, f+df(f,t+dt(t)), t+dt(t))
                ${uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))}
            + v_online_MIP(unit, s, f+df(f,t+dt(t)), t+dt(t))
                ${uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))}
833
834
835
836
837
838
839
840
841
842
843
844
845
846
            ) // END sum(ft)
        ) // END sum(mst_start)

    =E=

    // State of the unit at the end of the sample
    + sum(mst_end(m, s_, t_),
        + sum(sft(s_, f_, t_),
            + v_online_LP(unit, s_, f_, t_)${uft_onlineLP(unit, f_, t_)}
            + v_online_MIP(unit, s_, f_, t_)${uft_onlineMIP(unit, f_, t_)}
            ) // END sum(ft)
        ) // END sum(mst_end)
;

847
* --- Ramp Constraints --------------------------------------------------------
848

849
850
851
852
q_genRamp(ms(m, s), gnuft_ramp(grid, node, unit, f, t))
    ${  ord(t) > msStart(m, s) + 1
        and msft(m, s, f, t)
        } ..
853

854
855
    + v_genRamp(grid, node, unit, s, f, t)
        * p_stepLength(m, f, t)
856

857
    =E=
858

859
    // Change in generation over the interval: v_gen(t) - v_gen(t-1)
860
    + v_gen(grid, node, unit, s, f, t)
861

862
    // Unit generation at t-1 (except aggregator units right before the aggregation threshold, see next term)
863
    - v_gen(grid, node, unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${not uft_aggregator_first(unit, f, t)}
864
865
    // Unit generation at t-1, aggregator units right before the aggregation threshold
    + sum(unit_${unitAggregator_unit(unit, unit_)},
866
        - v_gen(grid, node, unit_, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))
867
      )${uft_aggregator_first(unit, f, t)}
868
;
869

870
* --- Ramp Up Limits ----------------------------------------------------------
871

872
873
874
875
876
877
878
879
880
881
882
883
q_rampUpLimit(ms(m, s), gnuft_ramp(grid, node, unit, f, t))
    ${  ord(t) > msStart(m, s) + 1
        and msft(m, s, f, t)
        and p_gnu(grid, node, unit, 'maxRampUp')
        and [ sum(restype, nuRescapable(restype, 'up', node, unit))
              or uft_online(unit, f, t)
              or unit_investLP(unit)
              or unit_investMIP(unit)
              ]
        } ..

    // Ramp speed of the unit?
884
    + v_genRamp(grid, node, unit, s, f, t)
885
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
886
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
887
888
889
890
891
        ) // END sum(nuRescapable)
        / p_stepLength(m, f, t)

    =L=

892
    // Ramping capability of units without an online variable
893
894
895
    + (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
896
            + v_invest_LP(unit, t_)${not uft_online(unit, f, t) and unit_investLP(unit)}
897
                * p_gnu(grid, node, unit, 'unitSizeTot')
898
            + v_invest_MIP(unit, t_)${not uft_online(unit, f, t) and unit_investMIP(unit)}
899
900
901
902
903
904
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

905
    // Ramping capability of units with an online variable
906
    + (
Topi Rasku's avatar
Topi Rasku committed
907
908
909
910
        + v_online_LP(unit, s, f+df_central(f,t), t)
            ${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, s, f+df_central(f,t), t)
            ${uft_onlineMIP(unit, f, t)}
911
912
913
914
915
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

916
917
918
919
920
921
922
923
924
925
926
927
928
    // Generation units not be able to ramp from zero to min. load within one time interval according to their maxRampUp
    + sum(unitStarttype(unit, starttype)${   uft_online(unit, f, t)
                                             and gnu_output(grid, node, unit)
                                             and not uft_startupTrajectory(unit, f, t)
                                             and ( + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                                                       + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                                                       + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
                                                     ) // END sum(effGroup)
                                                       / p_stepLength(m, f, t)
                                                   - p_gnu(grid, node, unit, 'maxRampUp')
                                                       * 60 > 0
                                                   )
                                             },
929
930
931
932
        + v_startup_LP(unit, starttype, s, f, t)
            ${ uft_onlineLP(unit, f, t) }
        + v_startup_MIP(unit, starttype, s, f, t)
            ${ uft_onlineMIP(unit, f, t) }
933
934
935
936
937
938
939
940
941
942
943
944
      ) // END sum(starttype)
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * (
            + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
              ) // END sum(effGroup)
                / p_stepLength(m, f, t)
            - p_gnu(grid, node, unit, 'maxRampUp')
                * 60   // Unit conversion from [p.u./min] to [p.u./h]
          ) // END * v_startup

945
946
947
948
    // Units in the run-up phase need to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeTot')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
949
950
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
951
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
952
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
953
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
954
                    ]
955
956
957
958
959
960
961
962
                    * [
                        + p_unit(unit, 'rampSpeedToMinLoad')
                        + ( p_gnu(grid, node, unit, 'maxRampUp') - p_unit(unit, 'rampSpeedToMinLoad') )${ not runUpCounter(unit, counter+1) } // Ramp speed adjusted for the last run-up interval
                            * ( p_u_runUpTimeIntervalsCeil(unit) - p_u_runUpTimeIntervals(unit) )
                        ]
                    * 60 // Unit conversion from [p.u./min] into [p.u./h]
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)
963

964
    // Shutdown of consumption units according to maxRampUp
965
966
967
968
969
970
    + [
        + v_shutdown_LP(unit, s, f, t)
            ${uft_onlineLP(unit, f, t) and gnu_input(grid, node, unit)}
        + v_shutdown_MIP(unit, s, f, t)
            ${uft_onlineMIP(unit, f, t) and gnu_input(grid, node, unit)}
        ]
971
        * p_gnu(grid, node, unit, 'unitSizeTot')
972
973
974
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
    // Consumption units not be able to ramp from min. load to zero within one time interval according to their maxRampUp
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
    + [
        + v_shutdown_LP(unit, s, f, t)
            ${ uft_onlineLP(unit, f, t) }
        + v_shutdown_MIP(unit, s, f, t)
            ${ uft_onlineMIP(unit, f, t) }
        ]
        ${  gnu_input(grid, node, unit)
            and ( + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                      + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                      + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
                      ) // END sum(effGroup)
                      / p_stepLength(m, f, t)
                  - p_gnu(grid, node, unit, 'maxRampUp')
                      * 60 > 0
                  )
            }
991
992
993
994
995
996
997
998
999
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * (
            + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
                ) // END sum(effGroup)
                / p_stepLength(m, f, t)
            - p_gnu(grid, node, unit, 'maxRampUp')
                * 60   // Unit conversion from [p.u./min] to [p.u./h]
1000
          ) // END * v_shutdown