2d_constraints.gms 175 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
$ontext
This file is part of Backbone.

Backbone is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Backbone is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Backbone.  If not, see <http://www.gnu.org/licenses/>.
$offtext

18

19
* =============================================================================
20
* --- Constraint Equation Definitions -----------------------------------------
21
22
23
24
* =============================================================================

* --- Energy Balance ----------------------------------------------------------

25
26
27
q_balance(gn(grid, node), msft(m, s, f, t)) // Energy/power balance dynamics solved using implicit Euler discretization
    ${  not p_gn(grid, node, 'boundAll')
        } ..
28
29
30
31

    // The left side of the equation is the change in the state (will be zero if the node doesn't have a state)
    + p_gn(grid, node, 'energyStoredPerUnitOfState')${gn_state(grid, node)} // Unit conversion between v_state of a particular node and energy variables (defaults to 1, but can have node based values if e.g. v_state is in Kelvins and each node has a different heat storage capacity)
        * [
32
33
            + v_state(grid, node, s, f+df_central(f,t), t)                   // The difference between current
            - v_state(grid, node, s+ds_state(grid,node,s,t), f+df(f,t+dt(t)), t+dt(t))       // ... and previous state of the node
34
35
36
37
38
39
40
41
            ]

    =E=

    // The right side of the equation contains all the changes converted to energy terms
    + p_stepLength(m, f, t) // Multiply with the length of the timestep to convert power into energy
        * (
            // Self discharge out of the model boundaries
42
            - p_gn(grid, node, 'selfDischargeLoss')${ gn_state(grid, node) }
43
                * v_state(grid, node, s, f+df_central(f,t), t) // The current state of the node
44
45

            // Energy diffusion from this node to neighbouring nodes
46
            - sum(gnn_state(grid, node, to_node),
47
                + p_gnn(grid, node, to_node, 'diffCoeff')
48
                    * v_state(grid, node, s, f+df_central(f,t), t)
49
50
51
                ) // END sum(to_node)

            // Energy diffusion from neighbouring nodes to this node
52
            + sum(gnn_state(grid, from_node, node),
53
                + p_gnn(grid, from_node, node, 'diffCoeff')
54
                    * v_state(grid, from_node, s, f+df_central(f,t), t) // Incoming diffusion based on the state of the neighbouring node
55
56
57
                ) // END sum(from_node)

            // Controlled energy transfer, applies when the current node is on the left side of the connection
58
            - sum(gn2n_directional(grid, node, node_),
59
                + (1 - p_gnn(grid, node, node_, 'transferLoss')) // Reduce transfer losses
60
                    * v_transfer(grid, node, node_, s, f, t)
61
                + p_gnn(grid, node, node_, 'transferLoss') // Add transfer losses back if transfer is from this node to another node
62
                    * v_transferRightward(grid, node, node_, s, f, t)
63
64
65
                ) // END sum(node_)

            // Controlled energy transfer, applies when the current node is on the right side of the connection
66
            + sum(gn2n_directional(grid, node_, node),
67
                + v_transfer(grid, node_, node, s, f, t)
68
                - p_gnn(grid, node_, node, 'transferLoss') // Reduce transfer losses if transfer is from another node to this node
69
                    * v_transferRightward(grid, node_, node, s, f, t)
70
71
72
73
                ) // END sum(node_)

            // Interactions between the node and its units
            + sum(gnuft(grid, node, unit, f, t),
74
                + v_gen(grid, node, unit, s, f, t) // Unit energy generation and consumption
75
                )
76
77

            // Spilling energy out of the endogenous grids in the model
78
            - v_spill(grid, node, s, f, t)${node_spill(node)}
79
80

            // Power inflow and outflow timeseries to/from the node
81
            + ts_influx_(grid, node, f, t, s)   // Incoming (positive) and outgoing (negative) absolute value time series
82
83

            // Dummy generation variables, for feasibility purposes
84
85
            + vq_gen('increase', grid, node, s, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
            - vq_gen('decrease', grid, node, s, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
86
    ) // END * p_stepLength
87
;
88
89

* --- Reserve Demand ----------------------------------------------------------
90
91
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.
92

93
94
q_resDemand(restypeDirectionGroup(restype, up_down, group), sft(s, f, t))
    ${  ord(t) < tSolveFirst + p_groupReserves(group, restype, 'reserve_length')
95
        and not [ restypeReleasedForRealization(restype)
96
                  and sft_realized(s, f, t)]
97
        } ..
98

99
    // Reserve provision by capable units on this group
100
    + sum(gnuft(grid, node, unit, f, t)${ gnGroup(grid, node, group)
101
                                          and gnuRescapable(restype, up_down, grid, node, unit)
102
                                          },
103
        + v_reserve(restype, up_down, grid, node, unit, s, f+df_reserves(grid, node, restype, f, t), t)
104
            * [ // Account for reliability of reserves
105
106
                + 1${sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_gnuReserves(grid, node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)}
107
                ] // END * v_reserve
108
        ) // END sum(gnuft)
109

110
    // Reserve provision from other reserve categories when they can be shared
111
    + sum((gnuft(grid, node, unit, f, t), restype_)${ gnGroup(grid, node, group)
112
                                                      and p_gnuRes2Res(grid, node, unit, restype_, up_down, restype)
113
                                                      },
114
115
        + v_reserve(restype_, up_down, grid, node, unit, s, f+df_reserves(grid, node, restype_, f, t), t)
            * p_gnuRes2Res(grid, node, unit, restype_, up_down, restype)
116
            * [ // Account for reliability of reserves
117
118
119
                + 1${sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_gnuReserves(grid, node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)}
                    * p_gnuReserves(grid, node, unit, restype_, 'reserveReliability')
120
                ] // END * v_reserve
121
        ) // END sum(gnuft)
122

123
    // Reserve provision to this group via transfer links
124
125
    + sum(gn2n_directional(grid, node_, node)${ gnGroup(grid, node, group)
                                                and not gnGroup(grid, node_, group)
126
                                                and restypeDirectionGridNodeNode(restype, up_down, grid, node_, node)
127
                                                },
128
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
129
            * v_resTransferRightward(restype, up_down, grid, node_, node, s, f+df_reserves(grid, node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
130
        ) // END sum(gn2n_directional)
131
132
    + sum(gn2n_directional(grid, node, node_)${ gnGroup(grid, node, group)
                                                and not gnGroup(grid, node_, group)
133
                                                and restypeDirectionGridNodeNode(restype, up_down, grid, node_, node)
134
                                                },
135
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
136
            * v_resTransferLeftward(restype, up_down, grid, node, node_, s, f+df_reserves(grid, node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
137
138
139
140
141
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves
142
143
    + ts_reserveDemand(restype, up_down, group, f, t)${p_groupReserves(group, restype, 'use_time_series')}
    + p_groupReserves(group, restype, up_down)${not p_groupReserves(group, restype, 'use_time_series')}
144

145
    // Reserve demand increase because of units
146
    + sum(gnuft(grid, node, unit, f, t)${ gnGroup(grid, node, group)
147
                                          and p_gnuReserves(grid, node, unit, restype, 'reserve_increase_ratio') // Could be better to have 'reserve_increase_ratio' separately for up and down directions
148
                                          },
149
150
        + v_gen(grid, node, unit, s, f, t)
            * p_gnuReserves(grid, node, unit, restype, 'reserve_increase_ratio')
151
152
        ) // END sum(nuft)

153
    // Reserve provisions to other groups via transfer links
154
155
    + sum(gn2n_directional(grid, node, node_)${ gnGroup(grid, node, group)
                                                and not gnGroup(grid, node_, group)
156
                                                and restypeDirectionGridNodeNode(restype, up_down, grid, node, node_)
157
                                                },   // If trasferring reserves to another node, increase your own reserves by same amount
158
        + v_resTransferRightward(restype, up_down, grid, node, node_, s, f+df_reserves(grid, node, restype, f, t), t)
159
        ) // END sum(gn2n_directional)
160
161
    + sum(gn2n_directional(grid, node_, node)${ gnGroup(grid, node, group)
                                                and not gnGroup(grid, node_, group)
162
                                                and restypeDirectionGridNodeNode(restype, up_down, grid, node, node_)
163
                                                },   // If trasferring reserves to another node, increase your own reserves by same amount
164
        + v_resTransferLeftward(restype, up_down, grid, node_, node, s, f+df_reserves(grid, node, restype, f, t), t)
165
166
167
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
168
169
    - vq_resDemand(restype, up_down, group, s, f+df_reservesGroup(group, restype, f, t), t)
    - vq_resMissing(restype, up_down, group, s, f+df_reservesGroup(group, restype, f, t), t)${ft_reservesFixed(group, restype, f+df_reservesGroup(group, restype, f, t), t)}
170
;
171

172
173
174
175
* --- N-1 Reserve Demand ----------------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

176
177
q_resDemandLargestInfeedUnit(restypeDirectionGroup(restype, 'up', group), unit_fail(unit_), sft(s, f, t))
    ${  ord(t) < tSolveFirst + p_groupReserves(group, restype, 'reserve_length')
178
179
180
        and not [ restypeReleasedForRealization(restype)
            and ft_realized(f, t)
            ]
181
        and sum(gnGroup(grid, node, group), p_gnuReserves(grid, node, unit_, restype, 'portion_of_infeed_to_reserve'))
182
183
        and uft(unit_, f, t) // only active units
        and sum(gnGroup(grid, node, group), gnu_output(grid, node, unit_)) // only units with output capacity 'inside the group'
184
        } ..
185

186
187
    // Reserve provision by capable units on this group excluding the failing one
    + sum(gnuft(grid, node, unit, f, t)${ gnGroup(grid, node, group)
188
                                          and gnuRescapable(restype, 'up', grid, node, unit)
189
190
                                          and (ord(unit_) ne ord(unit))
                                          },
191
        + v_reserve(restype, 'up', grid, node, unit, s, f+df_reserves(grid, node, restype, f, t), t)
192
            * [ // Account for reliability of reserves
193
194
                + 1${sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_gnuReserves(grid, node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)}
195
                ] // END * v_reserve
196
197
198
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
199
    + sum((gnuft(grid, node, unit, f, t), restype_)${ gnGroup(grid, node, group)
200
                                                      and p_gnuRes2Res(grid, node, unit, restype_, 'up', restype)
201
202
                                                      and (ord(unit_) ne ord(unit))
                                                      },
203
204
        + v_reserve(restype_, 'up', grid, node, unit, s, f+df_reserves(grid, node, restype_, f, t), t)
            * p_gnuRes2Res(grid, node, unit, restype_, 'up', restype)
205
            * [ // Account for reliability of reserves
206
207
208
                + 1${sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_gnuReserves(grid, node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)}
                    * p_gnuReserves(grid, node, unit, restype_, 'reserveReliability')
209
                ] // END * v_reserve
210
211
        ) // END sum(nuft)

212
213
214
    // Reserve provision to this group via transfer links
    + sum(gn2n_directional(grid, node_, node)${ gnGroup(grid, node, group)
                                                and not gnGroup(grid, node_, group)
215
                                                and restypeDirectionGridNodeNode(restype, 'up', grid, node_, node)
216
                                                },
217
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
218
            * v_resTransferRightward(restype, 'up', grid, node_, node, s, f+df_reserves(grid, node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
219
        ) // END sum(gn2n_directional)
220
221
    + sum(gn2n_directional(grid, node, node_)${ gnGroup(grid, node, group)
                                                and not gnGroup(grid, node_, group)
222
                                                and restypeDirectionGridNodeNode(restype, 'up', grid, node_, node)
223
                                                },
224
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
225
            * v_resTransferLeftward(restype, 'up', grid, node, node_, s, f+df_reserves(grid, node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
226
227
228
229
        ) // END sum(gn2n_directional)

    =G=

230
    // Demand for reserves due to a large unit that could fail
231
232
    + sum(gnGroup(grid, node, group),
        + v_gen(grid, node, unit_, s, f, t)
233
            * p_gnuReserves(grid, node, unit_, restype, 'portion_of_infeed_to_reserve')
234
        ) // END sum(gnGroup)
235

236
237
238
    // Reserve provisions to other groups via transfer links
    + sum(gn2n_directional(grid, node, node_)${ gnGroup(grid, node, group)
                                                and not gnGroup(grid, node_, group)
239
                                                and restypeDirectionGridNodeNode(restype, 'up', grid, node, node_)
240
                                                },   // If trasferring reserves to another node, increase your own reserves by same amount
241
        + v_resTransferRightward(restype, 'up', grid, node, node_, s, f+df_reserves(grid, node, restype, f, t), t)
242
        ) // END sum(gn2n_directional)
243
244
    + sum(gn2n_directional(grid, node_, node)${ gnGroup(grid, node, group)
                                                and not gnGroup(grid, node_, group)
245
                                                and restypeDirectionGridNodeNode(restype, 'up', grid, node, node_)
246
                                                },   // If trasferring reserves to another node, increase your own reserves by same amount
247
        + v_resTransferLeftward(restype, 'up', grid, node_, node, s, f+df_reserves(grid, node, restype, f, t), t)
248
249
250
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
251
252
    - vq_resDemand(restype, 'up', group, s, f+df_reservesGroup(group, restype, f, t), t)
    - vq_resMissing(restype, 'up', group, s, f+df_reservesGroup(group, restype, f, t), t)${ft_reservesFixed(group, restype, f+df_reservesGroup(group, restype, f, t), t)}
253
;
254

255
256
* --- ROCOF Limit -- Units ----------------------------------------------------

257
258
259
q_rateOfChangeOfFrequencyUnit(group, unit_fail(unit_), sft(s, f, t))
    ${  p_groupPolicy(group, 'defaultFrequency')
        and p_groupPolicy(group, 'ROCOF')
260
261
        and uft(unit_, f, t) // only active units
        and sum(gnGroup(grid, node, group), gnu_output(grid, node, unit_)) // only units with output capacity 'inside the group'
262
263
        } ..

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    // Kinetic/rotational energy in the system
    + p_groupPolicy(group, 'ROCOF')*2
        * [
            + sum(gnu_output(grid, node, unit)${   ord(unit) ne ord(unit_)
                                                   and gnGroup(grid, node, group)
                                                   and gnuft(grid, node, unit, f, t)
                                                   },
                + p_gnu(grid, node, unit, 'inertia')
                    * p_gnu(grid ,node, unit, 'unitSizeMVA')
                    * [
                        + v_online_LP(unit, s, f+df_central(f,t), t)
                            ${uft_onlineLP(unit, f, t)}
                        + v_online_MIP(unit, s, f+df_central(f,t), t)
                            ${uft_onlineMIP(unit, f, t)}
                        + v_gen(grid, node, unit, s, f, t)${not uft_online(unit, f, t)}
                            / p_gnu(grid, node, unit, 'unitSizeGen')
                        ] // * p_gnu
                ) // END sum(gnu_output)
            ] // END * p_groupPolicy
283
284
285

    =G=

286
287
288
289
290
291
    // Demand for kinetic/rotational energy due to a large unit that could fail
    + p_groupPolicy(group, 'defaultFrequency')
        * sum(gnu_output(grid, node, unit_)${   gnGroup(grid, node, group)
                                                },
            + v_gen(grid, node, unit_ , s, f, t)
            ) // END sum(gnu_output)
292
;
293

294
295
296
* --- ROCOF Limit -- Transfer Links -------------------------------------------

q_rateOfChangeOfFrequencyTransfer(group, gn2n(grid, node_, node_fail), sft(s, f, t))
297
298
299
300
301
302
303
    ${  p_groupPolicy(group, 'defaultFrequency')
        and p_groupPolicy(group, 'ROCOF')
        and gnGroup(grid, node_, group) // only interconnectors where one end is 'inside the group'
        and not gnGroup(grid, node_fail, group) // and the other end is 'outside the group'
        and [ p_gnn(grid, node_, node_fail, 'portion_of_transfer_to_reserve')
              or p_gnn(grid, node_fail, node_, 'portion_of_transfer_to_reserve')
              ]
304
305
        } ..

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    // Kinetic/rotational energy in the system
    + p_groupPolicy(group, 'ROCOF')*2
        * [
            + sum(gnu_output(grid, node, unit)${   gnGroup(grid, node, group)
                                                   and gnuft(grid, node, unit, f, t)
                                                   },
                + p_gnu(grid, node, unit, 'inertia')
                    * p_gnu(grid ,node, unit, 'unitSizeMVA')
                    * [
                        + v_online_LP(unit, s, f+df_central(f,t), t)
                            ${uft_onlineLP(unit, f, t)}
                        + v_online_MIP(unit, s, f+df_central(f,t), t)
                            ${uft_onlineMIP(unit, f, t)}
                        + v_gen(grid, node, unit, s, f, t)${not uft_online(unit, f, t)}
                            / p_gnu(grid, node, unit, 'unitSizeGen')
                        ] // * p_gnu
                ) // END sum(gnu_output)
            ] // END * p_groupPolicy
324
325
326

    =G=

327
328
329
330
331
    // Demand for kinetic/rotational energy due to a large interconnector that could fail
    + p_groupPolicy(group, 'defaultFrequency')
        * [
            // Loss of import due to potential interconnector failures
            + p_gnn(grid, node_fail, node_, 'portion_of_transfer_to_reserve')
332
                * v_transferRightward(grid, node_fail, node_, s, f, t)${gn2n_directional(grid, node_fail, node_)}
333
334
                * (1 - p_gnn(grid, node_fail, node_, 'transferLoss') )
            + p_gnn(grid, node_, node_fail, 'portion_of_transfer_to_reserve')
335
                * v_transferLeftward(grid, node_, node_fail, s, f, t)${gn2n_directional(grid, node_, node_fail)}
336
337
338
                * (1 - p_gnn(grid, node_, node_fail, 'transferLoss') )
            // Loss of export due to potential interconnector failures
            + p_gnn(grid, node_fail, node_, 'portion_of_transfer_to_reserve')
339
                * v_transferLeftward(grid, node_fail, node_, s, f, t)${gn2n_directional(grid, node_fail, node_)}
340
            + p_gnn(grid, node_, node_fail, 'portion_of_transfer_to_reserve')
341
                * v_transferRightward(grid, node_, node_fail, s, f, t)${gn2n_directional(grid, node_, node_fail)}
342
            ] // END * p_groupPolicy
343
;
344

345
* --- N-1 Upward reserve demand due to a possibility that an interconnector that is transferring power to the node group fails -------------------------------------------------
346
347
348
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

349
350
q_resDemandLargestInfeedTransferUp(restypeDirectionGroup(restype, 'up', group), gn2n(grid, node_, node_fail), sft(s, f, t))
    ${  ord(t) < tSolveFirst + p_groupReserves(group, restype, 'reserve_length')
351
352
        and not [ restypeReleasedForRealization(restype)
                  and sft_realized(s, f, t)]
353
354
355
        and gn2n_directional(grid, node_, node_fail)
        and [ (gnGroup(grid, node_, group) and not gnGroup(grid, node_fail, group)) // only interconnectors where one end is 'inside the group'
              or (gnGroup(grid, node_fail, group) and not gnGroup(grid, node_, group)) // and the other end is 'outside the group'
356
              ]
357
358
359
360
        and [ p_gnn(grid, node_, node_fail, 'portion_of_transfer_to_reserve')
              or p_gnn(grid, node_fail, node_, 'portion_of_transfer_to_reserve')
              ]
        and p_groupReserves3D(group, restype, 'up', 'LossOfTrans')
361
362
        } ..

363
364
    // Reserve provision by capable units on this group
    + sum(gnuft(grid, node, unit, f, t)${ gnGroup(grid, node, group)
365
                                          and gnuRescapable(restype, 'up', grid, node, unit)
366
                                          },
367
        + v_reserve(restype, 'up', grid, node, unit, s, f+df_reserves(grid, node, restype, f, t), t)
368
            * [ // Account for reliability of reserves
369
370
                + 1${sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_gnuReserves(grid, node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)}
371
                ] // END * v_reserve
372
        ) // END sum(gnuft)
373
374

    // Reserve provision from other reserve categories when they can be shared
375
    + sum((gnuft(grid, node, unit, f, t), restype_)${ gnGroup(grid, node, group)
376
                                                      and p_gnuRes2Res(grid, node, unit, restype_, 'up', restype)
377
                                                      },
378
379
        + v_reserve(restype_, 'up', grid, node, unit, s, f+df_reserves(grid, node, restype_, f, t), t)
            * p_gnuRes2Res(grid, node, unit, restype_, 'up', restype)
380
            * [ // Account for reliability of reserves
381
382
383
                + 1${sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_gnuReserves(grid, node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)}
                    * p_gnuReserves(grid, node, unit, restype_, 'reserveReliability')
384
                ] // END * v_reserve
385
        ) // END sum(gnuft)
386

387
388
389
390
    // Reserve provision to this group via transfer links
    + sum(gn2n_directional(grid, from_node, to_node)${ gnGroup(grid, to_node, group)
                                                       and not gnGroup(grid, from_node, group)
                                                       and not (from_node(node_) and to_node(node_fail)) // excluding the failing link
391
                                                       and restypeDirectionGridNodeNode(restype, 'up', grid, from_node, to_node)
392
393
                                                       },
        + (1 - p_gnn(grid, from_node, to_node, 'transferLoss') )
394
            * v_resTransferRightward(restype, 'up', grid, from_node, to_node, s, f+df_reserves(grid, from_node, restype, f, t), t)
395
        ) // END sum(gn2n_directional)
396
397
398
    + sum(gn2n_directional(grid, to_node, from_node)${ gnGroup(grid, to_node, group)
                                                       and not gnGroup(grid, from_node, group)
                                                       and not (to_node(node_) and from_node(node_fail)) // excluding the failing link
399
                                                       and restypeDirectionGridNodeNode(restype, 'up', grid, from_node, to_node)
400
401
                                                       },
        + (1 - p_gnn(grid, to_node, from_node, 'transferLoss') )
402
            * v_resTransferLeftward(restype, 'up', grid, to_node, from_node, s, f+df_reserves(grid, from_node, restype, f, t), t)
403
404
405
406
        ) // END sum(gn2n_directional)

    =G=

407
408
409
410
411
    // Demand for upward reserve due to potential interconnector failures (sudden loss of import)
    + p_gnn(grid, node_, node_fail, 'portion_of_transfer_to_reserve')${gnGroup(grid, node_fail, group)}
        * v_transferRightward(grid, node_, node_fail, s, f, t) // multiply with efficiency?
    + p_gnn(grid, node_fail, node_, 'portion_of_transfer_to_reserve')${gnGroup(grid, node_, group)}
        * v_transferLeftward(grid, node_, node_fail, s, f, t) // multiply with efficiency?
ran li's avatar
ran li committed
412

413
414
415
416
    // Reserve provisions to other groups via transfer links
    + sum(gn2n_directional(grid, from_node, to_node)${ gnGroup(grid, from_node, group)
                                                       and not gnGroup(grid, to_node, group)
                                                       and not (from_node(node_) and to_node(node_fail)) // excluding the failing link
417
                                                       and restypeDirectionGridNodeNode(restype, 'up', grid, from_node, to_node)
418
                                                       },
ran li's avatar
ran li committed
419
          // Reserve transfers to other nodes increase the reserve need of the present node
420
        + v_resTransferRightward(restype, 'up', grid, from_node, to_node, s, f+df_reserves(grid, from_node, restype, f, t), t)
ran li's avatar
ran li committed
421
        ) // END sum(gn2n_directional)
422
423
424
    + sum(gn2n_directional(grid, to_node, from_node)${ gnGroup(grid, from_node, group)
                                                       and not gnGroup(grid, to_node, group)
                                                       and not (to_node(node_) and from_node(node_fail)) // excluding the failing link
425
                                                       and restypeDirectionGridNodeNode(restype, 'up', grid, from_node, to_node)
426
                                                       },
ran li's avatar
ran li committed
427
          // Reserve transfers to other nodes increase the reserve need of the present node
428
        + v_resTransferLeftward(restype, 'up', grid, to_node, from_node, s, f+df_reserves(grid, from_node, restype, f, t), t)
ran li's avatar
ran li committed
429
430
431
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
432
433
    - vq_resDemand(restype, 'up', group, s, f+df_reservesGroup(group, restype, f, t), t)
    - vq_resMissing(restype, 'up', group, s, f+df_reservesGroup(group, restype, f, t), t)${ft_reservesFixed(group, restype, f+df_reservesGroup(group, restype, f, t), t)}
ran li's avatar
ran li committed
434
435
;

436
* --- N-1 Downward reserve demand due to a possibility that an interconnector that is transferring power from the node group fails -------------------------------------------------
ran li's avatar
ran li committed
437
438
439
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

440
441
q_resDemandLargestInfeedTransferDown(restypeDirectionGroup(restype, 'down', group), gn2n(grid, node_, node_fail), sft(s, f, t))
    ${  ord(t) < tSolveFirst + p_groupReserves(group, restype, 'reserve_length')
ran li's avatar
ran li committed
442
443
        and not [ restypeReleasedForRealization(restype)
                  and sft_realized(s, f, t)]
444
445
446
        and gn2n_directional(grid, node_, node_fail)
        and [ (gnGroup(grid, node_, group) and not gnGroup(grid, node_fail, group)) // only interconnectors where one end is 'inside the group'
              or (gnGroup(grid, node_fail, group) and not gnGroup(grid, node_, group)) // and the other end is 'outside the group'
447
              ]
448
449
450
451
        and [ p_gnn(grid, node_, node_fail, 'portion_of_transfer_to_reserve')
              or p_gnn(grid, node_fail, node_, 'portion_of_transfer_to_reserve')
              ]
        and p_groupReserves3D(group, restype, 'down', 'LossOfTrans')
ran li's avatar
ran li committed
452
453
        } ..

454
455
    // Reserve provision by capable units on this group
    + sum(gnuft(grid, node, unit, f, t)${ gnGroup(grid, node, group)
456
                                          and gnuRescapable(restype, 'down', grid, node, unit)
457
                                          },
458
        + v_reserve(restype, 'down', grid, node, unit, s, f+df_reserves(grid, node, restype, f, t), t)
ran li's avatar
ran li committed
459
            * [ // Account for reliability of reserves
460
461
                + 1${sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_gnuReserves(grid, node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)}
ran li's avatar
ran li committed
462
                ] // END * v_reserve
463
        ) // END sum(gnuft)
ran li's avatar
ran li committed
464
465

    // Reserve provision from other reserve categories when they can be shared
466
    + sum((gnuft(grid, node, unit, f, t), restype_)${ gnGroup(grid, node, group)
467
                                                      and p_gnuRes2Res(grid, node, unit, restype_, 'down', restype)
468
                                                      },
469
470
        + v_reserve(restype_, 'down', grid, node, unit, s, f+df_reserves(grid, node, restype_, f, t), t)
            * p_gnuRes2Res(grid, node, unit, restype_, 'down', restype)
ran li's avatar
ran li committed
471
            * [ // Account for reliability of reserves
472
473
474
                + 1${sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_gnuReserves(grid, node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)}
                    * p_gnuReserves(grid, node, unit, restype_, 'reserveReliability')
ran li's avatar
ran li committed
475
                ] // END * v_reserve
476
        ) // END sum(gnuft)
ran li's avatar
ran li committed
477

478
479
480
481
    // Reserve provision to this group via transfer links
    + sum(gn2n_directional(grid, from_node, to_node)${ gnGroup(grid, to_node, group)
                                                       and not gnGroup(grid, from_node, group)
                                                       and not (from_node(node_) and to_node(node_fail)) // excluding the failing link
482
                                                       and restypeDirectionGridNodeNode(restype, 'down', grid, from_node, to_node)
483
484
                                                       },
        + (1 - p_gnn(grid, from_node, to_node, 'transferLoss') )
485
            * v_resTransferRightward(restype, 'down', grid, from_node, to_node, s, f+df_reserves(grid, from_node, restype, f, t), t)
ran li's avatar
ran li committed
486
        ) // END sum(gn2n_directional)
487
488
489
    + sum(gn2n_directional(grid, to_node, from_node)${ gnGroup(grid, to_node, group)
                                                       and not gnGroup(grid, from_node, group)
                                                       and not (to_node(node_) and from_node(node_fail)) // excluding the failing link
490
                                                       and restypeDirectionGridNodeNode(restype, 'down', grid, from_node, to_node)
491
492
                                                       },
        + (1 - p_gnn(grid, to_node, from_node, 'transferLoss') )
493
            * v_resTransferLeftward(restype, 'down', grid, to_node, from_node, s, f+df_reserves(grid, from_node, restype, f, t), t)
ran li's avatar
ran li committed
494
495
496
497
        ) // END sum(gn2n_directional)

    =G=

498
499
500
501
502
    // Demand for downward reserve due to potential interconnector failures (sudden loss of export)
    + p_gnn(grid, node_, node_fail, 'portion_of_transfer_to_reserve')${gnGroup(grid, node_, group)}
        * v_transferRightward(grid, node_, node_fail, s, f, t)
    + p_gnn(grid, node_fail, node_, 'portion_of_transfer_to_reserve')${gnGroup(grid, node_fail, group)}
        * v_transferLeftward(grid, node_, node_fail, s, f, t)
503

504
505
506
507
    // Reserve provisions to other groups via transfer links
    + sum(gn2n_directional(grid, from_node, to_node)${ gnGroup(grid, from_node, group)
                                                       and not gnGroup(grid, to_node, group)
                                                       and not (from_node(node_) and to_node(node_fail)) // excluding the failing link
508
                                                       and restypeDirectionGridNodeNode(restype, 'down', grid, from_node, to_node)
509
                                                       },
510
          // Reserve transfers to other nodes increase the reserve need of the present node
511
        + v_resTransferRightward(restype, 'down', grid, from_node, to_node, s, f+df_reserves(grid, from_node, restype, f, t), t)
512
        ) // END sum(gn2n_directional)
513
514
515
    + sum(gn2n_directional(grid, to_node, from_node)${ gnGroup(grid, from_node, group)
                                                       and not gnGroup(grid, to_node, group)
                                                       and not (to_node(node_) and from_node(node_fail)) // excluding the failing link
516
                                                       and restypeDirectionGridNodeNode(restype, 'down', grid, from_node, to_node)
517
                                                       },
518
          // Reserve transfers to other nodes increase the reserve need of the present node
519
        + v_resTransferLeftward(restype, 'down', grid, to_node, from_node, s, f+df_reserves(grid, from_node, restype, f, t), t)
520
521
522
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
523
524
    - vq_resDemand(restype, 'down', group, s, f+df_reservesGroup(group, restype, f, t), t)
    - vq_resMissing(restype, 'down', group, s, f+df_reservesGroup(group, restype, f, t), t)${ft_reservesFixed(group, restype, f+df_reservesGroup(group, restype, f, t), t)}
525
;
526

527
* --- N-1 reserve demand due to a possibility that an interconnector that is transferring power to/from the node group fails -------------------------------------------------
ran li's avatar
ran li committed
528
529
530
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
q_resDemandLargestInfeedTransfer(restypeDirectionGroup(restype, up_down, group), gn2n(grid, node_left, node_right), sft(s, f, t))
    ${  ord(t) < tSolveFirst + p_groupReserves(group, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
                  and sft_realized(s, f, t)]
        and gn2n_directional(grid, node_left, node_right)
        and [ (gnGroup(grid, node_left, group) and not gnGroup(grid, node_right, group)) // only interconnectors where one end is 'inside the group'
              or (gnGroup(grid, node_right, group) and not gnGroup(grid, node_left, group)) // and the other end is 'outside the group'
              ]
        and [ p_gnn(grid, node_left, node_right, 'portion_of_transfer_to_reserve')
              or p_gnn(grid, node_right, node_left, 'portion_of_transfer_to_reserve')
              ]
        and p_groupReserves3D(group, restype, up_down, 'LossOfTrans')
        } ..

    // Reserve provision by capable units on this group
    + sum(gnuft(grid, node, unit, f, t)${ gnGroup(grid, node, group)
547
                                          and gnuRescapable(restype, up_down, grid, node, unit)
548
                                          },
549
        + v_reserve(restype, up_down, grid, node, unit, s, f+df_reserves(grid, node, restype, f, t), t)
550
            * [ // Account for reliability of reserves
551
552
                + 1${sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_gnuReserves(grid, node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)}
553
554
555
556
557
                ] // END * v_reserve
        ) // END sum(gnuft)

    // Reserve provision from other reserve categories when they can be shared
    + sum((gnuft(grid, node, unit, f, t), restype_)${ gnGroup(grid, node, group)
558
                                                      and p_gnuRes2Res(grid, node, unit, restype_, up_down, restype)
559
                                                      },
560
561
        + v_reserve(restype_, up_down, grid, node, unit, s, f+df_reserves(grid, node, restype_, f, t), t)
            * p_gnuRes2Res(grid, node, unit, restype_, up_down, restype)
562
            * [ // Account for reliability of reserves
563
564
565
                + 1${sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_gnuReserves(grid, node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(grid, node, restype, f, t), t)}
                    * p_gnuReserves(grid, node, unit, restype_, 'reserveReliability')
566
567
568
569
570
571
572
                ] // END * v_reserve
        ) // END sum(gnuft)

    // Reserve provision to this group via transfer links
    + sum(gn2n_directional(grid, node_, node)${ gnGroup(grid, node, group)
                                                and not gnGroup(grid, node_, group)
                                                and not (sameas(node_, node_left) and sameas(node, node_right)) // excluding the failing link
573
                                                and restypeDirectionGridNodeNode(restype, up_down, grid, node_, node)
574
575
                                                },
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
576
            * v_resTransferRightward(restype, up_down, grid, node_, node, s, f+df_reserves(grid, node_, restype, f, t), t)
577
578
579
580
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${ gnGroup(grid, node, group)
                                                and not gnGroup(grid, node_, group)
                                                and not (sameas(node, node_left) and sameas(node_, node_right)) // excluding the failing link
581
                                                and restypeDirectionGridNodeNode(restype, up_down, grid, node_, node)
582
583
                                                },
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
584
            * v_resTransferLeftward(restype, up_down, grid, node, node_, s, f+df_reserves(grid, node_, restype, f, t), t)
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        ) // END sum(gn2n_directional)

    =G=

    // Demand for upward reserve due to potential interconnector failures (sudden loss of import)
    + [
        + p_gnn(grid, node_left, node_right, 'portion_of_transfer_to_reserve')${gnGroup(grid, node_right, group)}
            * v_transferRightward(grid, node_left, node_right, s, f, t) // multiply with efficiency?
        + p_gnn(grid, node_right, node_left, 'portion_of_transfer_to_reserve')${gnGroup(grid, node_left, group)}
            * v_transferLeftward(grid, node_left, node_right, s, f, t) // multiply with efficiency?
        ]${sameas(up_down, 'up')}
    // Demand for downward reserve due to potential interconnector failures (sudden loss of export)
    + [
        + p_gnn(grid, node_left, node_right, 'portion_of_transfer_to_reserve')${gnGroup(grid, node_left, group)}
            * v_transferRightward(grid, node_left, node_right, s, f, t)
        + p_gnn(grid, node_right, node_left, 'portion_of_transfer_to_reserve')${gnGroup(grid, node_right, group)}
            * v_transferLeftward(grid, node_left, node_right, s, f, t)
        ]${sameas(up_down, 'down')}

    // Reserve provisions to other groups via transfer links
    + sum(gn2n_directional(grid, node, node_)${ gnGroup(grid, node, group)
                                                and not gnGroup(grid, node_, group)
                                                and not (sameas(node, node_left) and sameas(node_, node_right)) // excluding the failing link
608
                                                and restypeDirectionGridNodeNode(restype, up_down, grid, node, node_)
609
610
                                                },
          // Reserve transfers to other nodes increase the reserve need of the present node
611
        + v_resTransferRightward(restype, up_down, grid, node, node_, s, f+df_reserves(grid, node, restype, f, t), t)
612
613
614
615
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node_, node)${ gnGroup(grid, node, group)
                                                and not gnGroup(grid, node_, group)
                                                and not (sameas(node_, node_left) and sameas(node, node_right)) // excluding the failing link
616
                                                and restypeDirectionGridNodeNode(restype, up_down, grid, node, node_)
617
618
                                                },
          // Reserve transfers to other nodes increase the reserve need of the present node
619
        + v_resTransferLeftward(restype, up_down, grid, node_, node, s, f+df_reserves(grid, node, restype, f, t), t)
620
621
622
623
624
625
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
    - vq_resDemand(restype, up_down, group, s, f+df_reservesGroup(group, restype, f, t), t)
    - vq_resMissing(restype, up_down, group, s, f+df_reservesGroup(group, restype, f, t), t)${ft_reservesFixed(group, restype, f+df_reservesGroup(group, restype, f, t), t)}
;
ran li's avatar
ran li committed
626

627
628
* --- Maximum Downward Capacity -----------------------------------------------

629
q_maxDownward(gnu(grid, node, unit), msft(m, s, f, t))
630
631
    ${  gnuft(grid, node, unit, f, t)
        and {
632
633
            [   ord(t) < tSolveFirst + smax(restype, p_gnReserves(grid, node, restype, 'reserve_length')) // Unit is either providing
                and sum(restype, gnuRescapable(restype, 'down', grid, node, unit)) // downward reserves
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
                ]
            // NOTE!!! Could be better to form a gnuft_reserves subset?
            or [ // the unit has an online variable
                uft_online(unit, f, t)
                and [
                    (unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeGen')) // generators with a min. load
                    or p_gnu(grid, node, unit, 'maxCons') // or consuming units with an online variable
                    ]
                ] // END or
            or [ // consuming units with investment possibility
                gnu_input(grid, node, unit)
                and [unit_investLP(unit) or unit_investMIP(unit)]
                ]
        }} ..

649
    // Energy generation/consumption
650
    + v_gen(grid, node, unit, s, f, t)
651
652

    // Considering output constraints (e.g. cV line)
653
654
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
655
            * v_gen(grid_output, node_, unit, s, f, t)
656
657
658
        ) // END sum(gngnu_constrainedOutputRatio)

    // Downward reserve participation
659
660
661
    - sum(gnuRescapable(restype, 'down', grid, node, unit)${ ord(t) < tSolveFirst + p_gnReserves(grid, node, restype, 'reserve_length')
                                                             and not gnuOfflineRescapable(restype, grid, node, unit)
                                                             },
662
        + v_reserve(restype, 'down', grid, node, unit, s, f+df_reserves(grid, node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
663
664
665
666
667
668
        ) // END sum(nuRescapable)

    =G= // Must be greater than minimum load or maximum consumption  (units with min-load and both generation and consumption are not allowed)

    // Generation units, greater than minload
    + p_gnu(grid, node, unit, 'unitSizeGen')
669
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
670
671
672
673
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [ // Online variables should only be generated for units with restrictions
674
675
            + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f+df_central(f,t), t)} // LP online variant
            + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f+df_central(f,t), t)} // MIP online variant
676
677
            ] // END v_online

678
679
680
681
    // Units in run-up phase neet to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
682
683
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
684
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
685
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
686
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
687
                    ]
688
                    * p_uCounter_runUpMin(unit, counter)
689
690
691
692
693
694
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)

    // Units in shutdown phase need to keep up with the shutdown rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
695
696
697
698
699
700
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                ]
701
                * p_uCounter_shutdownMin(unit, counter)
702
            ) // END sum(shutdownCounter)
703

704
705
706
707
708
    // Consuming units, greater than maxCons
    // Available capacity restrictions
    - p_unit(unit, 'availability')
        * [
            // Capacity factors for flow units
709
            + sum(flowUnit(flow, unit),
710
                + ts_cf_(flow, node, f, t, s)
711
712
713
714
715
716
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxCons')${not uft_online(unit, f, t)} // Use initial maximum if no online variables
717
718
719
720
            // !!! TEMPORARY SOLUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
            + [
                + p_gnu(grid, node, unit, 'unitSizeCons')
                + p_gnu(grid, node, unit, 'maxCons')${not p_gnu(grid, node, unit, 'unitSizeCons') > 0}
721
                    / ( p_unit(unit, 'unitCount') + 1${not p_unit(unit, 'unitCount') > 0} )
722
723
                ]
            // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
724
                * [
725
                    // Capacity online
726
727
                    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
                    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
728
729
730
731
732
733
734
735

                    // Investments to additional non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f, t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)} // NOTE! v_invest_LP also for consuming units is positive
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)} // NOTE! v_invest_MIP also for consuming units is positive
                        ) // END sum(t_invest)
736
737
                    ] // END * p_gnu(unitSizeCons)
            ] // END * p_unit(availability)
738
;
739

740
741
* --- Maximum Downward Capacity for Production/Consumption, Online Reserves and Offline Reserves ---

Niina Helistö's avatar
Niina Helistö committed
742
q_maxDownwardOfflineReserve(gnu(grid, node, unit), msft(m, s, f, t))
743
744
    ${  gnuft(grid, node, unit, f, t)
        and {
745
746
            [   ord(t) < tSolveFirst + smax(restype, p_gnReserves(grid, node, restype, 'reserve_length')) // Unit is providing
                and sum(restype, gnuRescapable(restype, 'down', grid, node, unit)) // downward reserves
747
748
749
                ]
        }

750
         and {  sum(restype, gnuOfflineRescapable(restype, grid, node, unit))}  // and it can provide some reserve products although being offline
751
752
753
754
755
756
757
758
759
760
761
762
763

}..

    // Energy generation/consumption
    + v_gen(grid, node, unit, s, f, t)

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
            * v_gen(grid_output, node_, unit, s, f, t)
        ) // END sum(gngnu_constrainedOutputRatio)

    // Downward reserve participation
764
765
    - sum(gnuRescapable(restype, 'down', grid, node, unit)${ord(t) < tSolveFirst + p_gnReserves(grid, node, restype, 'reserve_length')},
        + v_reserve(restype, 'down', grid, node, unit, s, f+df_reserves(grid, node, restype, f, t), t)
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
        ) // END sum(nuRescapable)

    =G= // Must be greater than maximum consumption

    // Consuming units
    // Available capacity restrictions
    - p_unit(unit, 'availability') // Consumption units are also restricted by their (available) capacity
        * [
            // Capacity factors for flow units
            + sum(flowUnit(flow, unit),
                + ts_cf_(flow, node, f, t, s)
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Existing capacity
            + p_gnu(grid, node, unit, 'maxCons')
            // Investments to new capacity
            + [
                + p_gnu(grid, node, unit, 'unitSizeCons')
                ]
                * [
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)}
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                        ) // END sum(t_invest)
                    ] // END * p_gnu(unitSizeCons)
            ] // END * p_unit(availability)

;

798
* --- Maximum Upwards Capacity for Production/Consumption and Online Reserves ---
799

800
q_maxUpward(gnu(grid, node, unit), msft(m, s, f, t))
801
802
    ${  gnuft(grid, node, unit, f, t)
        and {
803
804
            [   ord(t) < tSolveFirst + smax(restype, p_gnReserves(grid, node, restype, 'reserve_length')) // Unit is either providing
                and sum(restype, gnuRescapable(restype, 'up', grid, node, unit)) // upward reserves
805
806
807
808
809
810
811
812
813
814
815
816
                ]
            or [
                uft_online(unit, f, t) // or the unit has an online variable
                and [
                    [unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeCons')] // consuming units with min_load
                    or [p_gnu(grid, node, unit, 'maxGen')]                          // generators with an online variable
                    ]
                ]
            or [
                gnu_output(grid, node, unit) // generators with investment possibility
                and (unit_investLP(unit) or unit_investMIP(unit))
                ]
Ciara O'Dwyer's avatar
Ciara O'Dwyer committed
817
818
819
             }
                 }..

820

821
    // Energy generation/consumption
822
    + v_gen(grid, node, unit, s, f, t)
823
824
825
826

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
827
            * v_gen(grid_output, node_, unit, s, f, t)
828
829
830
        ) // END sum(gngnu_constrainedOutputRatio)

    // Upwards reserve participation
831
832
833
    + sum(gnuRescapable(restype, 'up', grid, node, unit)${ ord(t) < tSolveFirst + p_gnReserves(grid, node, restype, 'reserve_length')
                                                           and not gnuOfflineRescapable(restype, grid, node, unit)
                                                           },
834
        + v_reserve(restype, 'up', grid, node, unit, s, f+df_reserves(grid, node, restype, f, t), t)
835
836
837
838
839
        ) // END sum(nuRescapable)

    =L= // must be less than available/online capacity

    // Consuming units
840
    - p_gnu(grid, node, unit, 'unitSizeCons')
841
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
842
843
844
845
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [
846
847
            + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
            + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
848
849
850
851
852
853
854
            ] // END * p_gnu(unitSizeCons)

    // Generation units
    // Available capacity restrictions
    + p_unit(unit, 'availability') // Generation units are restricted by their (available) capacity
        * [
            // Capacity factor for flow units
855
            + sum(flowUnit(flow, unit),
856
                + ts_cf_(flow, node, f, t, s)
857
858
859
860
861
862
863
864
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxGen')${not uft_online(unit, f, t)} // Use initial maxGen if no online variables
            + p_gnu(grid, node, unit, 'unitSizeGen')
                * [
865
                    // Capacity online
866
867
                    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f ,t)}
                    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
868
869
870
871
872
873
874
875

                    // Investments to non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f ,t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)}
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                        ) // END sum(t_invest)
876
877
                    ] // END * p_gnu(unitSizeGen)
            ] // END * p_unit(availability)
878

879
880
881
882
    // Units in run-up phase neet to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
883
884
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
885
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
886
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
887
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
888
                    ]
889
                    * p_uCounter_runUpMax(unit, counter)
890
891
892
893
894
895
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)

    // Units in shutdown phase need to keep up with the shutdown rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
896
897
898
899
900
901
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                ]
902
                * p_uCounter_shutdownMax(unit, counter)
903
            ) // END sum(shutdownCounter)
904
;
905

906
* --- Maximum Upwards Capacity for Production/Consumption, Online Reserves and Offline Reserves ---
Ciara O'Dwyer's avatar
Ciara O'Dwyer committed
907

Niina Helistö's avatar
Niina Helistö committed
908
q_maxUpwardOfflineReserve(gnu(grid, node, unit), msft(m, s, f, t))
Ciara O'Dwyer's avatar
Ciara O'Dwyer committed
909
910
    ${  gnuft(grid, node, unit, f, t)
        and {
911
912
            [   ord(t) < tSolveFirst + smax(restype, p_gnReserves(grid, node, restype, 'reserve_length')) // Unit is providing
                and sum(restype, gnuRescapable(restype, 'up', grid, node, unit)) // upward reserves
Ciara O'Dwyer's avatar
Ciara O'Dwyer committed
913
914
915
                ]
        }

916
         and {  sum(restype, gnuOfflineRescapable(restype, grid, node, unit))}  // and it can provide some reserve products although being offline
Ciara O'Dwyer's avatar
Ciara O'Dwyer committed
917
918
919
920
921
922
923
924
925
926
927
928
929

}..

    // Energy generation/consumption
    + v_gen(grid, node, unit, s, f, t)

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
            * v_gen(grid_output, node_, unit, s, f, t)
        ) // END sum(gngnu_constrainedOutputRatio)

    // Upwards reserve participation
930
931
    + sum(gnuRescapable(restype, 'up', grid, node, unit)${ord(t) < tSolveFirst + p_gnReserves(grid, node, restype, 'reserve_length')},
        + v_reserve(restype, 'up', grid, node, unit, s, f+df_reserves(grid, node, restype, f, t), t)
Ciara O'Dwyer's avatar
Ciara O'Dwyer committed
932
933
        ) // END sum(nuRescapable)

934
    =L= // must be less than available capacity
Ciara O'Dwyer's avatar
Ciara O'Dwyer committed
935
936
937
938
939
940
941
942
943
944
945
946

    // Generation units
    // Available capacity restrictions
    + p_unit(unit, 'availability') // Generation units are restricted by their (available) capacity
        * [
            // Capacity factor for flow units
            + sum(flowUnit(flow, unit),
                + ts_cf_(flow, node, f, t, s)
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
947
            // Capacity restriction
Ciara O'Dwyer's avatar
Ciara O'Dwyer committed
948
949
            + p_gnu(grid, node, unit, 'unitSizeGen')
                * [
950
951
                    // Existing capacity
                    + p_unit(unit, 'unitCount')
Ciara O'Dwyer's avatar
Ciara O'Dwyer committed
952

953
                    // Investments to new capacity
954
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
955
                                             },
956
957
958
                        + v_invest_LP(unit, t_)${unit_investLP(unit)}
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                        ) // END sum(t_invest)
Ciara O'Dwyer's avatar
Ciara O'Dwyer committed
959
960
961
962
                    ] // END * p_gnu(unitSizeGen)
            ] // END * p_unit(availability)
;

963
964
* --- Reserve Provision of Units with Investments -----------------------------

965
966
967
q_reserveProvision(gnuRescapable(restypeDirectionGridNode(restype, up_down, grid, node), unit), sft(s, f, t))
    ${  ord(t) <= tSolveFirst + p_gnReserves(grid, node, restype, 'reserve_length')
        and gnuft(grid, node, unit, f, t)
968
        and (unit_investLP(unit) or unit_investMIP(unit))
969
970
        and not sum(restypeDirectionGridNodeGroup(restype, up_down, grid, node, group),
                    ft_reservesFixed(group, restype, f+df_reservesGroup(group, restype, f, t), t))
971
972
        } ..

973
    + v_reserve(restype, up_down, grid, node, unit, s, f+df_reserves(grid, node, restype, f, t), t)
974
975
976

    =L=

977
    + p_gnuReserves(grid, node, unit, restype, up_down)
978
        * [
979
            + [ p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') ]
980
981
            + sum(t_invest(t_)${ ord(t_)<=ord(t) },
                + v_invest_LP(unit, t_)${unit_investLP(unit)}
982
                    * p_gnu(grid, node, unit, 'unitSizeTot')
983
                + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
984
                    * p_gnu(grid, node, unit, 'unitSizeTot')
985
986
                ) // END sum(t_)
            ]
987
988
989
990
        * p_unit(unit, 'availability') // Taking into account availability...
        * [
            // ... and capacity factor for flow units
            + sum(flowUnit(flow, unit),
991
                + ts_cf_(flow, node, f, t, s)
992
993
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
994
995
996
            ] // How to consider reserveReliability in the case of investments when we typically only have "realized" time steps?
;

997
* --- Online Reserve Provision of Units with Online Variables -----------------
Ciara O'Dwyer's avatar
Ciara O'Dwyer committed
998

999
1000
q_reserveProvisionOnline(gnuRescapable(restypeDirectionGridNode(restype, up_down, grid, node), unit), sft(s, f, t))
    ${  ord(t) <= tSolveFirst + p_gnReserves(grid, node, restype, 'reserve_length')