2d_constraints.gms 144 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
$ontext
This file is part of Backbone.

Backbone is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Backbone is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Backbone.  If not, see <http://www.gnu.org/licenses/>.
$offtext

18

19
* =============================================================================
20
* --- Constraint Equation Definitions -----------------------------------------
21
22
23
24
* =============================================================================

* --- Energy Balance ----------------------------------------------------------

25
26
27
q_balance(gn(grid, node), msft(m, s, f, t)) // Energy/power balance dynamics solved using implicit Euler discretization
    ${  not p_gn(grid, node, 'boundAll')
        } ..
28
29
30
31

    // The left side of the equation is the change in the state (will be zero if the node doesn't have a state)
    + p_gn(grid, node, 'energyStoredPerUnitOfState')${gn_state(grid, node)} // Unit conversion between v_state of a particular node and energy variables (defaults to 1, but can have node based values if e.g. v_state is in Kelvins and each node has a different heat storage capacity)
        * [
32
33
            + v_state(grid, node, s, f+df_central(f,t), t)                   // The difference between current
            - v_state(grid, node, s+ds_state(grid,node,s,t), f+df(f,t+dt(t)), t+dt(t))       // ... and previous state of the node
34
35
36
37
38
39
40
41
            ]

    =E=

    // The right side of the equation contains all the changes converted to energy terms
    + p_stepLength(m, f, t) // Multiply with the length of the timestep to convert power into energy
        * (
            // Self discharge out of the model boundaries
42
            - p_gn(grid, node, 'selfDischargeLoss')${ gn_state(grid, node) }
43
                * v_state(grid, node, s, f+df_central(f,t), t) // The current state of the node
44
45

            // Energy diffusion from this node to neighbouring nodes
46
            - sum(gnn_state(grid, node, to_node),
47
                + p_gnn(grid, node, to_node, 'diffCoeff')
48
                    * v_state(grid, node, s, f+df_central(f,t), t)
49
50
51
                ) // END sum(to_node)

            // Energy diffusion from neighbouring nodes to this node
52
            + sum(gnn_state(grid, from_node, node),
53
                + p_gnn(grid, from_node, node, 'diffCoeff')
54
                    * v_state(grid, from_node, s, f+df_central(f,t), t) // Incoming diffusion based on the state of the neighbouring node
55
56
57
                ) // END sum(from_node)

            // Controlled energy transfer, applies when the current node is on the left side of the connection
58
            - sum(gn2n_directional(grid, node, node_),
59
                + (1 - p_gnn(grid, node, node_, 'transferLoss')) // Reduce transfer losses
60
                    * v_transfer(grid, node, node_, s, f, t)
61
                + p_gnn(grid, node, node_, 'transferLoss') // Add transfer losses back if transfer is from this node to another node
62
                    * v_transferRightward(grid, node, node_, s, f, t)
63
64
65
                ) // END sum(node_)

            // Controlled energy transfer, applies when the current node is on the right side of the connection
66
            + sum(gn2n_directional(grid, node_, node),
67
                + v_transfer(grid, node_, node, s, f, t)
68
                - p_gnn(grid, node_, node, 'transferLoss') // Reduce transfer losses if transfer is from another node to this node
69
                    * v_transferRightward(grid, node_, node, s, f, t)
70
71
72
73
                ) // END sum(node_)

            // Interactions between the node and its units
            + sum(gnuft(grid, node, unit, f, t),
74
                + v_gen(grid, node, unit, s, f, t) // Unit energy generation and consumption
75
                )
76
77

            // Spilling energy out of the endogenous grids in the model
78
            - v_spill(grid, node, s, f, t)${node_spill(node)}
79
80

            // Power inflow and outflow timeseries to/from the node
81
            + ts_influx_(grid, node, f, t, s)   // Incoming (positive) and outgoing (negative) absolute value time series
82
83

            // Dummy generation variables, for feasibility purposes
84
85
            + vq_gen('increase', grid, node, s, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
            - vq_gen('decrease', grid, node, s, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
86
    ) // END * p_stepLength
87
;
88
89

* --- Reserve Demand ----------------------------------------------------------
90
91
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.
92

93
q_resDemand(restypeDirectionNode(restype, up_down, node), sft(s, f, t))
94
95
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
96
                  and sft_realized(s, f, t)]
97
        } ..
98

99
100
    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, up_down, node, unit)},
101
        + v_reserve(restype, up_down, node, unit, s, f+df_reserves(node, restype, f, t), t)
102
103
104
105
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
106
107
        ) // END sum(nuft)

108
    // Reserve provision from other reserve categories when they can be shared
109
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, up_down, restype)},
110
        + v_reserve(restype_, up_down, node, unit, s, f+df_reserves(node, restype_, f, t), t)
111
            * p_nuRes2Res(node, unit, restype_, up_down, restype)
112
113
114
115
116
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
117
118
        ) // END sum(nuft)

119
    // Reserve provision to this node via transfer links
120
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},
121
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
122
            * v_resTransferRightward(restype, up_down, node_, node, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
123
        ) // END sum(gn2n_directional)
124
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},
125
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
126
            * v_resTransferLeftward(restype, up_down, node, node_, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
127
128
129
130
131
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves
132
    + ts_reserveDemand(restype, up_down, node, f, t)${p_nReserves(node, restype, 'use_time_series')}
133
134
    + p_nReserves(node, restype, up_down)${not p_nReserves(node, restype, 'use_time_series')}

135
136
    // Reserve demand increase because of units
    + sum(nuft(node, unit, f, t)${p_nuReserves(node, unit, restype, 'reserve_increase_ratio')}, // Could be better to have 'reserve_increase_ratio' separately for up and down directions
137
        + sum(gnu(grid, node, unit), v_gen(grid, node, unit, s, f, t)) // Reserve sets and variables are currently lacking the grid dimension...
138
139
140
            * p_nuReserves(node, unit, restype, 'reserve_increase_ratio')
        ) // END sum(nuft)

141
    // Reserve provisions to another nodes via transfer links
142
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
143
        + v_resTransferRightward(restype, up_down, node, node_, s, f+df_reserves(node, restype, f, t), t)
144
        ) // END sum(gn2n_directional)
145
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
146
        + v_resTransferLeftward(restype, up_down, node_, node, s, f+df_reserves(node, restype, f, t), t)
147
148
149
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
150
151
    - vq_resDemand(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
152
;
153

154
155
156
157
* --- N-1 Reserve Demand ----------------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

158
q_resDemandLargestInfeedUnit(grid, restypeDirectionNode(restype, 'up', node), unit_fail(unit_), sft(s, f, t))
159
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
160
        and gn(grid, node)
161
162
163
        and not [ restypeReleasedForRealization(restype)
            and ft_realized(f, t)
            ]
164
        and p_nuReserves(node, unit_, restype, 'portion_of_infeed_to_reserve')
165
        } ..
166

167
168
    // Reserve provision by capable units on this node excluding the failing one
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'up', node, unit) and (ord(unit_) ne ord(unit))},
169
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
170
171
172
173
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
174
175
176
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
177
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'up', restype)},
178
        + v_reserve(restype_, 'up', node, unit, s, f+df_reserves(node, restype_, f, t), t)
179
            * p_nuRes2Res(node, unit, restype_, 'up', restype)
180
181
182
183
184
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
185
186
187
188
189
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node_, node)},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
190
            * v_resTransferRightward(restype, 'up', node_, node, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
191
192
193
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node_, node)},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
194
            * v_resTransferLeftward(restype, 'up', node, node_, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
195
196
197
198
199
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves of the failing one
200
    + v_gen(grid,node,unit_,s,f,t) * p_nuReserves(node, unit_, restype, 'portion_of_infeed_to_reserve')
201
202

    // Reserve provisions to another nodes via transfer links
203
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
204
        + v_resTransferRightward(restype, 'up', node, node_, s, f+df_reserves(node, restype, f, t), t)
205
        ) // END sum(gn2n_directional)
206
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
207
        + v_resTransferLeftward(restype, 'up', node_, node, s, f+df_reserves(node, restype, f, t), t)
208
209
210
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
211
212
    - vq_resDemand(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
213
;
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

* --- N-1 Downward Reserve Demand for interconnector----------------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

q_resDemandLargestInfeedIntDown(grid, restypeDirectionNode(restype, 'down', node), node_fail, sft(s, f, t))
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
                  and sft_realized(s, f, t)]
        and p_gnn(grid, node, node_fail, 'ReservePortion')
        } ..

    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'down', node, unit)},
        + v_reserve(restype, 'down', node, unit, s, f+df_reserves(node, restype, f, t), t)
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'down', restype)},
        + v_reserve(restype_, 'down', node, unit, s, f+df_reserves(node, restype_, f, t), t)
            * p_nuRes2Res(node, unit, restype_, 'down', restype)
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'down', node_, node) and (ord(node_) eq ord(node_fail))},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
            * v_resTransferRightward(restype, 'down', node_, node, s, f+df_reserves(node_, restype, f, t), t)
            * (1-p_gnn(grid, node_, node, 'ReservePortion'))
          // Reserves from the partly failing transmission line - reduces the need for reserves in the node
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'down', node_, node) and (ord(node_) eq ord(node_fail))},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
            * v_resTransferLeftward(restype, 'down', node, node_, s, f+df_reserves(node_, restype, f, t), t)
            * (1-p_gnn(grid, node, node_, 'ReservePortion'))
          // Reserves from the partly failing transmission line - reduces the need for reserves in the node
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'down', node_, node) and (ord(node_) ne ord(node_fail))},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
            * v_resTransferRightward(restype, 'down', node_, node, s, f+df_reserves(node_, restype, f, t), t)
          // Reserves from the partly failing transmission line - reduces the need for reserves in the node
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'down', node_, node) and (ord(node_) ne ord(node_fail))},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
            * v_resTransferLeftward(restype, 'down', node, node_, s, f+df_reserves(node_, restype, f, t), t)
          // Reserves from the partly failing transmission line - reduces the need for reserves in the node
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves
    + p_gnn(grid, node, node_fail, 'ReservePortion')*v_transferRightward(grid, node, node_fail, s, f, t)$p_nReserves(node, restype, 'Trans')

    // Reserve provisions to another nodes via transfer links
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'down', node, node_) and (ord(node_) eq ord(node_fail))},
          // If trasferring through the failing line, increase your own reserves by the portion
        + v_resTransferRightward(restype, 'down', node, node_, s, f+df_reserves(node, restype, f, t), t)
        * p_gnn(grid, node_, node, 'ReservePortion')
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'down', node, node_) and (ord(node_) eq ord(node_fail))},
          // If trasferring through the failing line, increase your own reserves by the portion
        + v_resTransferLeftward(restype, 'down', node_, node, s, f+df_reserves(node, restype, f, t), t)
        * p_gnn(grid, node, node_, 'ReservePortion')
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'down', node, node_) and (ord(node_) ne ord(node_fail))},
          // If trasferring through the good line, increase your own reserves by same amount
        + v_resTransferRightward(restype, 'down', node, node_, s, f+df_reserves(node, restype, f, t), t)
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'down', node, node_) and (ord(node_) ne ord(node_fail))},
          // If trasferring through the good line, increase your own reserves by same amount
        + v_resTransferLeftward(restype, 'down', node_, node, s, f+df_reserves(node, restype, f, t), t)
        ) // END sum(gn2n_directional)
    // Reserve demand feasibility dummy variables
    - vq_resDemand(restype, 'down', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'down', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
;

* --- N-1 Upward Reserve Demand for interconnector----------------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

q_resDemandLargestInfeedIntUp(grid, restypeDirectionNode(restype, 'up', node), node_fail, sft(s, f, t))
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
                  and sft_realized(s, f, t)]
        and p_gnn(grid, node_fail, node, 'ReservePortion')
        } ..

    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'up', node, unit)},
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'up', restype)},
        + v_reserve(restype_, 'up', node, unit, s, f+df_reserves(node, restype_, f, t), t)
            * p_nuRes2Res(node, unit, restype_, 'up', restype)
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node_, node) and (ord(node_) eq ord(node_fail))},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
            * v_resTransferRightward(restype, 'up', node_, node, s, f+df_reserves(node_, restype, f, t), t)
            * (1-p_gnn(grid, node_, node, 'ReservePortion'))
          // Reserves from the partly failing transmission line - reduces the need for reserves in the node
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node_, node) and (ord(node_) eq ord(node_fail))},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
            * v_resTransferLeftward(restype, 'up', node, node_, s, f+df_reserves(node_, restype, f, t), t)
            * (1-p_gnn(grid, node, node_, 'ReservePortion'))
          // Reserves from the partly failing transmission line - reduces the need for reserves in the node
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node_, node) and (ord(node_) ne ord(node_fail))},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
            * v_resTransferRightward(restype, 'up', node_, node, s, f+df_reserves(node_, restype, f, t), t)
          // Reserves from the partly failing transmission line - reduces the need for reserves in the node
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node_, node) and (ord(node_) ne ord(node_fail))},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
            * v_resTransferLeftward(restype, 'up', node, node_, s, f+df_reserves(node_, restype, f, t), t)
          // Reserves from the partly failing transmission line - reduces the need for reserves in the node
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves
    + p_gnn(grid, node_fail, node, 'ReservePortion')*v_transferLeftward(grid, node, node_fail, s, f, t)$p_nReserves(node, restype, 'Trans')

    // Reserve provisions to another nodes via transfer links
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_) and (ord(node_) eq ord(node_fail))},
          // If trasferring through the failing line, increase your own reserves by the portion
        + v_resTransferRightward(restype, 'up', node, node_, s, f+df_reserves(node, restype, f, t), t)
        * p_gnn(grid, node_, node, 'ReservePortion')
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node, node_) and (ord(node_) eq ord(node_fail))},
          // If trasferring through the failing line, increase your own reserves by the portion
        + v_resTransferLeftward(restype, 'up', node_, node, s, f+df_reserves(node, restype, f, t), t)
        * p_gnn(grid, node, node_, 'ReservePortion')
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_) and (ord(node_) ne ord(node_fail))},
          // If trasferring through the good line, increase your own reserves by same amount
        + v_resTransferRightward(restype, 'up', node, node_, s, f+df_reserves(node, restype, f, t), t)
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node, node_) and (ord(node_) ne ord(node_fail))},
          // If trasferring through the good line, increase your own reserves by same amount
        + v_resTransferLeftward(restype, 'up', node_, node, s, f+df_reserves(node, restype, f, t), t)
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
    - vq_resDemand(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
;
383
384
* --- Maximum Downward Capacity -----------------------------------------------

385
q_maxDownward(gnu(grid, node, unit), msft(m, s, f, t))
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    ${  gnuft(grid, node, unit, f, t)
        and {
            [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
                and sum(restype, nuRescapable(restype, 'down', node, unit)) // downward reserves
                ]
            // NOTE!!! Could be better to form a gnuft_reserves subset?
            or [ // the unit has an online variable
                uft_online(unit, f, t)
                and [
                    (unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeGen')) // generators with a min. load
                    or p_gnu(grid, node, unit, 'maxCons') // or consuming units with an online variable
                    ]
                ] // END or
            or [ // consuming units with investment possibility
                gnu_input(grid, node, unit)
                and [unit_investLP(unit) or unit_investMIP(unit)]
                ]
        }} ..

405
    // Energy generation/consumption
406
    + v_gen(grid, node, unit, s, f, t)
407
408

    // Considering output constraints (e.g. cV line)
409
410
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
411
            * v_gen(grid_output, node_, unit, s, f, t)
412
413
414
        ) // END sum(gngnu_constrainedOutputRatio)

    // Downward reserve participation
415
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
416
        + v_reserve(restype, 'down', node, unit, s, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
417
418
419
420
421
422
        ) // END sum(nuRescapable)

    =G= // Must be greater than minimum load or maximum consumption  (units with min-load and both generation and consumption are not allowed)

    // Generation units, greater than minload
    + p_gnu(grid, node, unit, 'unitSizeGen')
423
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
424
425
426
427
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [ // Online variables should only be generated for units with restrictions
428
429
            + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f+df_central(f,t), t)} // LP online variant
            + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f+df_central(f,t), t)} // MIP online variant
430
431
            ] // END v_online

432
433
434
435
    // Units in run-up phase neet to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
436
437
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
438
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
439
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
440
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
441
                    ]
442
                    * p_uCounter_runUpMin(unit, counter)
443
444
445
446
447
448
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)

    // Units in shutdown phase need to keep up with the shutdown rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
449
450
451
452
453
454
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                ]
455
                * p_uCounter_shutdownMin(unit, counter)
456
            ) // END sum(shutdownCounter)
457

458
459
460
461
462
    // Consuming units, greater than maxCons
    // Available capacity restrictions
    - p_unit(unit, 'availability')
        * [
            // Capacity factors for flow units
463
            + sum(flowUnit(flow, unit),
464
                + ts_cf_(flow, node, f, t, s)
465
466
467
468
469
470
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxCons')${not uft_online(unit, f, t)} // Use initial maximum if no online variables
471
472
473
474
            // !!! TEMPORARY SOLUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
            + [
                + p_gnu(grid, node, unit, 'unitSizeCons')
                + p_gnu(grid, node, unit, 'maxCons')${not p_gnu(grid, node, unit, 'unitSizeCons') > 0}
475
                    / ( p_unit(unit, 'unitCount') + 1${not p_unit(unit, 'unitCount') > 0} )
476
477
                ]
            // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
478
                * [
479
                    // Capacity online
480
481
                    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
                    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
482
483
484
485
486
487
488
489

                    // Investments to additional non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f, t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)} // NOTE! v_invest_LP also for consuming units is positive
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)} // NOTE! v_invest_MIP also for consuming units is positive
                        ) // END sum(t_invest)
490
491
                    ] // END * p_gnu(unitSizeCons)
            ] // END * p_unit(availability)
492
;
493
494
495

* --- Maximum Upwards Capacity ------------------------------------------------

496
q_maxUpward(gnu(grid, node, unit), msft(m, s, f, t))
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    ${  gnuft(grid, node, unit, f, t)
        and {
            [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
                and sum(restype, nuRescapable(restype, 'up', node, unit)) // upward reserves
                ]
            or [
                uft_online(unit, f, t) // or the unit has an online variable
                and [
                    [unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeCons')] // consuming units with min_load
                    or [p_gnu(grid, node, unit, 'maxGen')]                          // generators with an online variable
                    ]
                ]
            or [
                gnu_output(grid, node, unit) // generators with investment possibility
                and (unit_investLP(unit) or unit_investMIP(unit))
                ]
        }}..

515
    // Energy generation/consumption
516
    + v_gen(grid, node, unit, s, f, t)
517
518
519
520

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
521
            * v_gen(grid_output, node_, unit, s, f, t)
522
523
524
        ) // END sum(gngnu_constrainedOutputRatio)

    // Upwards reserve participation
525
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
526
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
527
528
529
530
531
        ) // END sum(nuRescapable)

    =L= // must be less than available/online capacity

    // Consuming units
532
    - p_gnu(grid, node, unit, 'unitSizeCons')
533
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
534
535
536
537
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [
538
539
            + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
            + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
540
541
542
543
544
545
546
            ] // END * p_gnu(unitSizeCons)

    // Generation units
    // Available capacity restrictions
    + p_unit(unit, 'availability') // Generation units are restricted by their (available) capacity
        * [
            // Capacity factor for flow units
547
            + sum(flowUnit(flow, unit),
548
                + ts_cf_(flow, node, f, t, s)
549
550
551
552
553
554
555
556
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxGen')${not uft_online(unit, f, t)} // Use initial maxGen if no online variables
            + p_gnu(grid, node, unit, 'unitSizeGen')
                * [
557
                    // Capacity online
558
559
                    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f ,t)}
                    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
560
561
562
563
564
565
566
567

                    // Investments to non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f ,t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)}
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                        ) // END sum(t_invest)
568
569
                    ] // END * p_gnu(unitSizeGen)
            ] // END * p_unit(availability)
570

571
572
573
574
    // Units in run-up phase neet to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
575
576
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
577
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
578
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
579
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
580
                    ]
581
                    * p_uCounter_runUpMax(unit, counter)
582
583
584
585
586
587
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)

    // Units in shutdown phase need to keep up with the shutdown rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
588
589
590
591
592
593
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                ]
594
                * p_uCounter_shutdownMax(unit, counter)
595
            ) // END sum(shutdownCounter)
596
;
597

598
599
* --- Reserve Provision of Units with Investments -----------------------------

600
601
602
603
604
605
606
q_reserveProvision(nuRescapable(restypeDirectionNode(restype, up_down, node), unit), sft(s, f, t))
    ${  ord(t) <= tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and nuft(node, unit, f, t)
        and (unit_investLP(unit) or unit_investMIP(unit))
        and not ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)
        } ..

607
    + v_reserve(restype, up_down, node, unit, s, f+df_reserves(node, restype, f, t), t)
608
609
610
611
612
613
614
615
616
617
618
619
620

    =L=

    + p_nuReserves(node, unit, restype, up_down)
        * [
            + sum(grid, p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )  // Reserve sets and variables are currently lacking the grid dimension...
            + sum(t_invest(t_)${ ord(t_)<=ord(t) },
                + v_invest_LP(unit, t_)${unit_investLP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                ) // END sum(t_)
            ]
621
622
623
624
        * p_unit(unit, 'availability') // Taking into account availability...
        * [
            // ... and capacity factor for flow units
            + sum(flowUnit(flow, unit),
625
                + ts_cf_(flow, node, f, t, s)
626
627
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
628
629
630
            ] // How to consider reserveReliability in the case of investments when we typically only have "realized" time steps?
;

631
632
* --- Unit Startup and Shutdown -----------------------------------------------

633
634
635
636
q_startshut(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        }..

637
    // Units currently online
638
639
    + v_online_LP (unit, s, f+df_central(f,t), t)${uft_onlineLP (unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
640
641

    // Units previously online
642
    // The same units
643
    - v_online_LP (unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
644
                                                             and not uft_aggregator_first(unit, f, t) } // This reaches to tFirstSolve when dt = -1
645
    - v_online_MIP(unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
646
647
648
649
                                                             and not uft_aggregator_first(unit, f, t) }

    // Aggregated units just before they are turned into aggregator units
    - sum(unit_${unitAggregator_unit(unit, unit_)},
650
651
        + v_online_LP (unit_, s, f+df(f,t+dt(t)), t+dt(t))${uft_onlineLP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
        + v_online_MIP(unit_, s, f+df(f,t+dt(t)), t+dt(t))${uft_onlineMIP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
652
        )${uft_aggregator_first(unit, f, t)} // END sum(unit_)
653

654
655
    =E=

656
    // Unit startup and shutdown
657

658
    // Add startup of units dt_toStartup before the current t (no start-ups for aggregator units before they become active)
659
    + sum(unitStarttype(unit, starttype),
660
        + v_startup_LP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
661
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
662
        + v_startup_MIP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
663
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
664
        )${not [unit_aggregator(unit) and ord(t) + dt_toStartup(unit, t) <= tSolveFirst + p_unit(unit, 'lastStepNotAggregated')]} // END sum(starttype)
665

666
667
668
669
    // NOTE! According to 3d_setVariableLimits,
    // cannot start a unit if the time when the unit would become online is outside
    // the horizon when the unit has an online variable
    // --> no need to add start-ups of aggregated units to aggregator units
670

671
    // Shutdown of units at time t
672
673
674
675
    - v_shutdown_LP(unit, s, f, t)
        ${ uft_onlineLP(unit, f, t) }
    - v_shutdown_MIP(unit, s, f, t)
        ${ uft_onlineMIP(unit, f, t) }
676
;
677

678
*--- Startup Type -------------------------------------------------------------
679
// !!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
680
681
682
// This formulation doesn't work as intended when unitCount > 1, as one recent
// shutdown allows for multiple hot/warm startups on subsequent time steps.
// Pending changes.
683

684
685
686
687
q_startuptype(ms(m, s), starttypeConstrained(starttype), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and unitStarttype(unit, starttype)
        } ..
688
689

    // Startup type
690
691
    + v_startup_LP(unit, starttype, s, f, t)${ uft_onlineLP(unit, f, t) }
    + v_startup_MIP(unit, starttype, s, f, t)${ uft_onlineMIP(unit, f, t) }
692
693
694
695

    =L=

    // Subunit shutdowns within special startup timeframe
696
697
698
699
700
701
702
    + sum(unitCounter(unit, counter)${  dt_starttypeUnitCounter(starttype, unit, counter)
                                        and t_active(t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
                                        },
        + v_shutdown_LP(unit, s, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)) }
        + v_shutdown_MIP(unit, s, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)) }
703
704
705
        ) // END sum(counter)

    // NOTE: for aggregator units, shutdowns for aggregated units are not considered
706
;
707

708

709
710
*--- Online Limits with Startup Type Constraints and Investments --------------

711
712
713
714
715
716
717
718
719
q_onlineLimit(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and {
            p_unit(unit, 'minShutdownHours')
            or p_u_runUpTimeIntervals(unit)
            or unit_investLP(unit)
            or unit_investMIP(unit)
        }} ..

720
    // Online variables
721
722
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f ,t)}
723
724
725
726
727
728

    =L=

    // Number of existing units
    + p_unit(unit, 'unitCount')

729
    // Number of units unable to become online due to restrictions
730
731
732
733
734
735
736
    - sum(unitCounter(unit, counter)${  dt_downtimeUnitCounter(unit, counter)
                                        and t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                        },
        + v_shutdown_LP(unit, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
        + v_shutdown_MIP(unit, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
737
738
739
        ) // END sum(counter)

    // Number of units unable to become online due to restrictions (aggregated units in the past horizon or if they have an online variable)
740
    - sum(unitAggregator_unit(unit, unit_),
741
742
743
744
745
746
747
        + sum(unitCounter(unit, counter)${  dt_downtimeUnitCounter(unit, counter)
                                            and t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                            },
            + v_shutdown_LP(unit_, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                ${ uft_onlineLP_withPrevious(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
            + v_shutdown_MIP(unit_, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                ${ uft_onlineMIP_withPrevious(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
748
749
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
750
751
752

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
753
754
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
755
756
757
        ) // END sum(t_invest)
;

758
759
760
761
*--- Both q_offlineAfterShutdown and q_onlineOnStartup work when there is only one unit.
*    These equations prohibit single units turning on and off at the same time step.
*    Unfortunately there seems to be no way to prohibit this when unit count is > 1.
*    (it shouldn't be worthwhile anyway if there is a startup cost, but it can fall within the solution gap).
762
763
764
765
q_onlineOnStartUp(s_active(s), uft_online(unit, f, t))
    ${  sft(s, f, t)
        and sum(starttype, unitStarttype(unit, starttype))
        }..
766
767

    // Units currently online
768
769
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
770
771
772
773

    =G=

    + sum(unitStarttype(unit, starttype),
774
        + v_startup_LP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
775
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
776
        + v_startup_MIP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
777
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
778
779
780
      ) // END sum(starttype)
;

781
782
783
784
q_offlineAfterShutdown(s_active(s), uft_online(unit, f, t))
    ${  sft(s, f, t)
        and sum(starttype, unitStarttype(unit, starttype))
        }..
785

786
787
788
789
790
    // Number of existing units
    + p_unit(unit, 'unitCount')

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
791
792
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
793
794
        ) // END sum(t_invest)

795
    // Units currently online
796
797
    - v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    - v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
798
799
800

    =G=

801
802
803
804
    + v_shutdown_LP(unit, s, f, t)
        ${ uft_onlineLP(unit, f, t) }
    + v_shutdown_MIP(unit, s, f, t)
        ${ uft_onlineMIP(unit, f, t) }
805
806
;

807
808
*--- Minimum Unit Uptime ------------------------------------------------------

809
810
811
812
q_onlineMinUptime(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and  p_unit(unit, 'minOperationHours')
        } ..
813
814

    // Units currently online
815
816
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
817
818
819
820

    =G=

    // Units that have minimum operation time requirements active
821
822
823
    + sum(unitCounter(unit, counter)${  dt_uptimeUnitCounter(unit, counter)
                                        and t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) // Don't sum over counters that don't point to an active time step
                                        },
824
        + sum(unitStarttype(unit, starttype),
825
            + v_startup_LP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
826
                ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
827
            + v_startup_MIP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
828
                ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
829
            ) // END sum(starttype)
830
831
832
        ) // END sum(counter)

    // Units that have minimum operation time requirements active (aggregated units in the past horizon or if they have an online variable)
Topi Rasku's avatar
Topi Rasku committed
833
    + sum(unitAggregator_unit(unit, unit_),
834
835
836
        + sum(unitCounter(unit, counter)${  dt_uptimeUnitCounter(unit, counter)
                                            and t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) // Don't sum over counters that don't point to an active time step
                                            },
837
            + sum(unitStarttype(unit, starttype),
838
                + v_startup_LP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
839
                    ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
840
                + v_startup_MIP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
841
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
842
843
844
                ) // END sum(starttype)
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
845
846
;

847
848
* --- Cyclic Boundary Conditions for Online State -----------------------------

849
850
851
852
853
q_onlineCyclic(uss_bound(unit, s_, s), m)
    ${  ms(m, s_)
        and ms(m, s)
        and tSolveFirst = mSettings(m, 't_start')
        }..
854
855
856
857

    // Initial value of the state of the unit at the start of the sample
    + sum(mst_start(m, s, t),
        + sum(sft(s, f, t),
Topi Rasku's avatar
Topi Rasku committed
858
859
860
861
            + v_online_LP(unit, s, f+df(f,t+dt(t)), t+dt(t))
                ${uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))}
            + v_online_MIP(unit, s, f+df(f,t+dt(t)), t+dt(t))
                ${uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))}
862
863
864
865
866
867
868
869
870
871
872
873
874
875
            ) // END sum(ft)
        ) // END sum(mst_start)

    =E=

    // State of the unit at the end of the sample
    + sum(mst_end(m, s_, t_),
        + sum(sft(s_, f_, t_),
            + v_online_LP(unit, s_, f_, t_)${uft_onlineLP(unit, f_, t_)}
            + v_online_MIP(unit, s_, f_, t_)${uft_onlineMIP(unit, f_, t_)}
            ) // END sum(ft)
        ) // END sum(mst_end)
;

876
* --- Ramp Constraints --------------------------------------------------------
877

878
879
880
881
q_genRamp(ms(m, s), gnuft_ramp(grid, node, unit, f, t))
    ${  ord(t) > msStart(m, s) + 1
        and msft(m, s, f, t)
        } ..
882

883
884
    + v_genRamp(grid, node, unit, s, f, t)
        * p_stepLength(m, f, t)
885

886
    =E=
887

888
    // Change in generation over the interval: v_gen(t) - v_gen(t-1)
889
    + v_gen(grid, node, unit, s, f, t)
890

891
    // Unit generation at t-1 (except aggregator units right before the aggregation threshold, see next term)
892
    - v_gen(grid, node, unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${not uft_aggregator_first(unit, f, t)}
893
894
    // Unit generation at t-1, aggregator units right before the aggregation threshold
    + sum(unit_${unitAggregator_unit(unit, unit_)},
895
        - v_gen(grid, node, unit_, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))
896
      )${uft_aggregator_first(unit, f, t)}
897
;
898

899
* --- Ramp Up Limits ----------------------------------------------------------
900

901
902
903
904
905
906
907
908
909
910
911
912
q_rampUpLimit(ms(m, s), gnuft_ramp(grid, node, unit, f, t))
    ${  ord(t) > msStart(m, s) + 1
        and msft(m, s, f, t)
        and p_gnu(grid, node, unit, 'maxRampUp')
        and [ sum(restype, nuRescapable(restype, 'up', node, unit))
              or uft_online(unit, f, t)
              or unit_investLP(unit)
              or unit_investMIP(unit)
              ]
        } ..

    // Ramp speed of the unit?
913
    + v_genRamp(grid, node, unit, s, f, t)
914
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
915
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
916
917
918
919
920
        ) // END sum(nuRescapable)
        / p_stepLength(m, f, t)

    =L=

921
    // Ramping capability of units without an online variable
922
923
924
    + (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
925
            + v_invest_LP(unit, t_)${not uft_online(unit, f, t) and unit_investLP(unit)}
926
                * p_gnu(grid, node, unit, 'unitSizeTot')
927
            + v_invest_MIP(unit, t_)${not uft_online(unit, f, t) and unit_investMIP(unit)}
928
929
930
931
932
933
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

934
    // Ramping capability of units with an online variable
935
    + (
Topi Rasku's avatar
Topi Rasku committed
936
937
938
939
        + v_online_LP(unit, s, f+df_central(f,t), t)
            ${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, s, f+df_central(f,t), t)
            ${uft_onlineMIP(unit, f, t)}
940
941
942
943
944
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

945
946
947
948
949
950
951
952
953
954
955
956
957
    // Generation units not be able to ramp from zero to min. load within one time interval according to their maxRampUp
    + sum(unitStarttype(unit, starttype)${   uft_online(unit, f, t)
                                             and gnu_output(grid, node, unit)
                                             and not uft_startupTrajectory(unit, f, t)
                                             and ( + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                                                       + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                                                       + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
                                                     ) // END sum(effGroup)
                                                       / p_stepLength(m, f, t)
                                                   - p_gnu(grid, node, unit, 'maxRampUp')
                                                       * 60 > 0
                                                   )
                                             },
958
959
960
961
        + v_startup_LP(unit, starttype, s, f, t)
            ${ uft_onlineLP(unit, f, t) }
        + v_startup_MIP(unit, starttype, s, f, t)
            ${ uft_onlineMIP(unit, f, t) }
962
963
964
965
966
967
968
969
970
971
972
973
      ) // END sum(starttype)
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * (
            + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
              ) // END sum(effGroup)
                / p_stepLength(m, f, t)
            - p_gnu(grid, node, unit, 'maxRampUp')
                * 60   // Unit conversion from [p.u./min] to [p.u./h]
          ) // END * v_startup

974
975
976
977
    // Units in the run-up phase need to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeTot')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
978
979
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
980
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
981
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
982
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
983
                    ]
984
985
986
987
988
989
990
991
                    * [
                        + p_unit(unit, 'rampSpeedToMinLoad')
                        + ( p_gnu(grid, node, unit, 'maxRampUp') - p_unit(unit, 'rampSpeedToMinLoad') )${ not runUpCounter(unit, counter+1) } // Ramp speed adjusted for the last run-up interval
                            * ( p_u_runUpTimeIntervalsCeil(unit) - p_u_runUpTimeIntervals(unit) )
                        ]
                    * 60 // Unit conversion from [p.u./min] into [p.u./h]
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)
992

993
    // Shutdown of consumption units according to maxRampUp
994
995
996
997
998
999
    + [
        + v_shutdown_LP(unit, s, f, t)
            ${uft_onlineLP(unit, f, t) and gnu_input(grid, node, unit)}
        + v_shutdown_MIP(unit, s, f, t)
            ${uft_onlineMIP(unit, f, t) and gnu_input(grid, node, unit)}
        ]
1000
        * p_gnu(grid, node, unit, 'unitSizeTot')