2d_constraints.gms 152 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
$ontext
This file is part of Backbone.

Backbone is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Backbone is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Backbone.  If not, see <http://www.gnu.org/licenses/>.
$offtext

18

19
* =============================================================================
20
* --- Constraint Equation Definitions -----------------------------------------
21
22
23
24
* =============================================================================

* --- Energy Balance ----------------------------------------------------------

25
26
27
q_balance(gn(grid, node), msft(m, s, f, t)) // Energy/power balance dynamics solved using implicit Euler discretization
    ${  not p_gn(grid, node, 'boundAll')
        } ..
28
29
30
31

    // The left side of the equation is the change in the state (will be zero if the node doesn't have a state)
    + p_gn(grid, node, 'energyStoredPerUnitOfState')${gn_state(grid, node)} // Unit conversion between v_state of a particular node and energy variables (defaults to 1, but can have node based values if e.g. v_state is in Kelvins and each node has a different heat storage capacity)
        * [
32
33
            + v_state(grid, node, s, f+df_central(f,t), t)                   // The difference between current
            - v_state(grid, node, s+ds_state(grid,node,s,t), f+df(f,t+dt(t)), t+dt(t))       // ... and previous state of the node
34
35
36
37
38
39
40
41
            ]

    =E=

    // The right side of the equation contains all the changes converted to energy terms
    + p_stepLength(m, f, t) // Multiply with the length of the timestep to convert power into energy
        * (
            // Self discharge out of the model boundaries
42
            - p_gn(grid, node, 'selfDischargeLoss')${ gn_state(grid, node) }
43
                * v_state(grid, node, s, f+df_central(f,t), t) // The current state of the node
44
45

            // Energy diffusion from this node to neighbouring nodes
46
            - sum(gnn_state(grid, node, to_node),
47
                + p_gnn(grid, node, to_node, 'diffCoeff')
48
                    * v_state(grid, node, s, f+df_central(f,t), t)
49
50
51
                ) // END sum(to_node)

            // Energy diffusion from neighbouring nodes to this node
52
            + sum(gnn_state(grid, from_node, node),
53
                + p_gnn(grid, from_node, node, 'diffCoeff')
54
                    * v_state(grid, from_node, s, f+df_central(f,t), t) // Incoming diffusion based on the state of the neighbouring node
55
56
57
                ) // END sum(from_node)

            // Controlled energy transfer, applies when the current node is on the left side of the connection
58
            - sum(gn2n_directional(grid, node, node_),
59
                + (1 - p_gnn(grid, node, node_, 'transferLoss')) // Reduce transfer losses
60
                    * v_transfer(grid, node, node_, s, f, t)
61
                + p_gnn(grid, node, node_, 'transferLoss') // Add transfer losses back if transfer is from this node to another node
62
                    * v_transferRightward(grid, node, node_, s, f, t)
63
64
65
                ) // END sum(node_)

            // Controlled energy transfer, applies when the current node is on the right side of the connection
66
            + sum(gn2n_directional(grid, node_, node),
67
                + v_transfer(grid, node_, node, s, f, t)
68
                - p_gnn(grid, node_, node, 'transferLoss') // Reduce transfer losses if transfer is from another node to this node
69
                    * v_transferRightward(grid, node_, node, s, f, t)
70
71
72
73
                ) // END sum(node_)

            // Interactions between the node and its units
            + sum(gnuft(grid, node, unit, f, t),
74
                + v_gen(grid, node, unit, s, f, t) // Unit energy generation and consumption
75
                )
76
77

            // Spilling energy out of the endogenous grids in the model
78
            - v_spill(grid, node, s, f, t)${node_spill(node)}
79
80

            // Power inflow and outflow timeseries to/from the node
81
            + ts_influx_(grid, node, f, t, s)   // Incoming (positive) and outgoing (negative) absolute value time series
82
83

            // Dummy generation variables, for feasibility purposes
84
85
            + vq_gen('increase', grid, node, s, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
            - vq_gen('decrease', grid, node, s, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
86
    ) // END * p_stepLength
87
;
88
89

* --- Reserve Demand ----------------------------------------------------------
90
91
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.
92

93
q_resDemand(restypeDirectionNode(restype, up_down, node), sft(s, f, t))
94
95
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
96
                  and sft_realized(s, f, t)]
97
        } ..
98

99
100
    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, up_down, node, unit)},
101
        + v_reserve(restype, up_down, node, unit, s, f+df_reserves(node, restype, f, t), t)
102
103
104
105
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
106
107
        ) // END sum(nuft)

108
    // Reserve provision from other reserve categories when they can be shared
109
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, up_down, restype)},
110
        + v_reserve(restype_, up_down, node, unit, s, f+df_reserves(node, restype_, f, t), t)
111
            * p_nuRes2Res(node, unit, restype_, up_down, restype)
112
113
114
115
116
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
117
118
        ) // END sum(nuft)

119
    // Reserve provision to this node via transfer links
120
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},
121
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
122
            * v_resTransferRightward(restype, up_down, node_, node, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
123
        ) // END sum(gn2n_directional)
124
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},
125
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
126
            * v_resTransferLeftward(restype, up_down, node, node_, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
127
128
129
130
131
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves
132
    + ts_reserveDemand(restype, up_down, node, f, t)${p_nReserves(node, restype, 'use_time_series')}
133
134
    + p_nReserves(node, restype, up_down)${not p_nReserves(node, restype, 'use_time_series')}

135
136
    // Reserve demand increase because of units
    + sum(nuft(node, unit, f, t)${p_nuReserves(node, unit, restype, 'reserve_increase_ratio')}, // Could be better to have 'reserve_increase_ratio' separately for up and down directions
137
        + sum(gnu(grid, node, unit), v_gen(grid, node, unit, s, f, t)) // Reserve sets and variables are currently lacking the grid dimension...
138
139
140
            * p_nuReserves(node, unit, restype, 'reserve_increase_ratio')
        ) // END sum(nuft)

141
    // Reserve provisions to another nodes via transfer links
142
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
143
        + v_resTransferRightward(restype, up_down, node, node_, s, f+df_reserves(node, restype, f, t), t)
144
        ) // END sum(gn2n_directional)
145
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
146
        + v_resTransferLeftward(restype, up_down, node_, node, s, f+df_reserves(node, restype, f, t), t)
147
148
149
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
150
151
    - vq_resDemand(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
152
;
153

154
155
156
157
* --- N-1 Reserve Demand ----------------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

158
q_resDemandLargestInfeedUnit(grid, restypeDirectionNode(restype, 'up', node), unit_fail(unit_), sft(s, f, t))
159
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
160
        and gn(grid, node)
161
162
163
        and not [ restypeReleasedForRealization(restype)
            and ft_realized(f, t)
            ]
164
        and p_nuReserves(node, unit_, restype, 'portion_of_infeed_to_reserve')
165
        } ..
166

167
168
    // Reserve provision by capable units on this node excluding the failing one
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'up', node, unit) and (ord(unit_) ne ord(unit))},
169
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
170
171
172
173
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
174
175
176
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
177
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'up', restype)},
178
        + v_reserve(restype_, 'up', node, unit, s, f+df_reserves(node, restype_, f, t), t)
179
            * p_nuRes2Res(node, unit, restype_, 'up', restype)
180
181
182
183
184
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
185
186
187
188
189
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node_, node)},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
190
            * v_resTransferRightward(restype, 'up', node_, node, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
191
192
193
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node_, node)},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
194
            * v_resTransferLeftward(restype, 'up', node, node_, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
195
196
197
198
        ) // END sum(gn2n_directional)

    =G=

199
    // Demand for reserves due to a large unit that could fail
200
    + v_gen(grid,node,unit_,s,f,t) * p_nuReserves(node, unit_, restype, 'portion_of_infeed_to_reserve')
201
202

    // Reserve provisions to another nodes via transfer links
203
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
204
        + v_resTransferRightward(restype, 'up', node, node_, s, f+df_reserves(node, restype, f, t), t)
205
        ) // END sum(gn2n_directional)
206
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
207
        + v_resTransferLeftward(restype, 'up', node_, node, s, f+df_reserves(node, restype, f, t), t)
208
209
210
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
211
212
    - vq_resDemand(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
213
;
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
q_RateOfChangeOfFrequency(grid, node, unit_fail(unit_), sft(s, f, t))
    ${  p_gn(grid, node, 'defaultFrequency')
        and p_gn(grid, node, 'ROCOF')
        } ..

    // Kinectic energy in the system
    [+ sum(gnu_output(grid, node, unit)${   ord(unit) ne ord(unit_)
                                            },
        + p_gnu(grid, node, unit, 'inertia')
            * p_gnu(grid ,node, unit, 'unitSizeMVA')
            * [
                + v_online_LP(unit, s, f+df_central(f,t), t)
                    ${uft_onlineLP(unit, f, t)}
                + v_online_MIP(unit, s, f+df_central(f,t), t)
                    ${uft_onlineMIP(unit, f, t)}
                + v_gen(grid, node, unit, s, f, t)${not uft_online(unit, f, t)}
                    / p_gnu(grid, node, unit, 'unitSizeGen')
                ] // * p_gnu
        ) // END sum(gnu_output)
        ]*p_gn(grid, node, 'ROCOF')*2

    =G=

    // Demand for reserves due to a large unit that could fail
    + v_gen(grid,node,unit_,s,f,t) * p_gn(grid, node, 'defaultFrequency')

;
ran li's avatar
ran li committed
242

243
* --- N-1 Upward reserve demand due to a possibility that an interconnector that is transferring power to the node fails -------------------------------------------------
244
245
246
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

ran li's avatar
ran li committed
247
q_resDemandLargestInfeedTransfer(grid, restypeDirectionNode(restype, 'up', node), node_fail, sft(s, f, t))
248
249
250
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
                  and sft_realized(s, f, t)]
ran li's avatar
ran li committed
251
        and (p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve') or p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve'))
ran li's avatar
ran li committed
252
        and p_nReserves(node, restype, 'LossOfTrans')
253
254
255
        } ..

    // Reserve provision by capable units on this node
ran li's avatar
ran li committed
256
257
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'up', node, unit)},
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
258
259
260
261
262
263
264
265
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'up', restype)},
ran li's avatar
ran li committed
266
267
        + v_reserve(restype_, 'up', node, unit, s, f+df_reserves(node, restype_, f, t), t)
            * p_nuRes2Res(node, unit, restype_, 'up', restype)
268
269
270
271
272
273
274
275
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
276
    // SHOULD THE node_fail BE EXCLUDED?
ran li's avatar
ran li committed
277
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node_, node)},
278
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
ran li's avatar
ran li committed
279
            * v_resTransferRightward(restype, 'up', node_, node, s, f+df_reserves(node_, restype, f, t), t)
280
            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
281
        ) // END sum(gn2n_directional)
ran li's avatar
ran li committed
282
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node_, node)},
283
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
ran li's avatar
ran li committed
284
            * v_resTransferLeftward(restype, 'up', node, node_, s, f+df_reserves(node_, restype, f, t), t)
285
            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
286
287
288
289
        ) // END sum(gn2n_directional)

    =G=

290
    // Upward Demand for reserves due to potential interconnector failures
ran li's avatar
ran li committed
291
    + p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve')
292
        * v_transferRightward(grid, node_fail, node, s, f, t)
293
    + p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
ran li's avatar
ran li committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        * v_transferLeftward(grid, node, node_fail, s, f, t)

    // Reserve provisions to another nodes via transfer links
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_)},
          // Reserve transfers to other nodes increase the reserve need of the present node
        + v_resTransferRightward(restype, 'up', node, node_, s, f+df_reserves(node, restype, f, t), t)
            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node, node_)},
          // Reserve transfers to other nodes increase the reserve need of the present node
        + v_resTransferLeftward(restype, 'up', node_, node, s, f+df_reserves(node, restype, f, t), t)
            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
    - vq_resDemand(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
;

* --- N-1 Downward reserve demand due to a possibility that an interconnector that is transferring power to the node fails -------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

q_resDemandLargestInfeedTransfer2(grid, restypeDirectionNode(restype, 'down', node), node_fail, sft(s, f, t))
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
                  and sft_realized(s, f, t)]
ran li's avatar
ran li committed
321
        and (p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve') or p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve'))
ran li's avatar
ran li committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        and p_nReserves(node, restype, 'LossOfTrans')
        } ..

    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'down', node, unit)},
        + v_reserve(restype, 'down', node, unit, s, f+df_reserves(node, restype, f, t), t)
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'down', restype)},
        + v_reserve(restype_, 'down', node, unit, s, f+df_reserves(node, restype_, f, t), t)
            * p_nuRes2Res(node, unit, restype_, 'down', restype)
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
    // SHOULD THE node_fail BE EXCLUDED?
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'down', node_, node)},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
            * v_resTransferRightward(restype, 'down', node_, node, s, f+df_reserves(node_, restype, f, t), t)
            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'down', node_, node)},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
            * v_resTransferLeftward(restype, 'down', node, node_, s, f+df_reserves(node_, restype, f, t), t)
            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves due to potential interconnector failures
    + p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve')
ran li's avatar
ran li committed
362
        * v_transferLeftward(grid, node_fail, node, s, f, t)
363
    + p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
ran li's avatar
ran li committed
364
        * v_transferRightward(grid, node, node_fail, s, f, t)
365
366

    // Reserve provisions to another nodes via transfer links
ran li's avatar
ran li committed
367
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_)},
368
          // Reserve transfers to other nodes increase the reserve need of the present node
ran li's avatar
ran li committed
369
        + v_resTransferRightward(restype, 'down', node, node_, s, f+df_reserves(node, restype, f, t), t)
370
371
            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)
ran li's avatar
ran li committed
372
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'down', node, node_)},
373
          // Reserve transfers to other nodes increase the reserve need of the present node
ran li's avatar
ran li committed
374
        + v_resTransferLeftward(restype, 'down', node_, node, s, f+df_reserves(node, restype, f, t), t)
375
376
377
378
            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
ran li's avatar
ran li committed
379
380
    - vq_resDemand(restype, 'down', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'down', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
381
;
382

ran li's avatar
ran li committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
* --- N-1 Upward reserve demand due to a possibility that an interconnector that is transferring power to the node fails -------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

*q_resDemandLargestInfeedTransfer(grid, restypeDirectionNode(restype, up_down, node), node_fail, sft(s, f, t))
*    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
*        and not [ restypeReleasedForRealization(restype)
*                  and sft_realized(s, f, t)]
*        and p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
*        and p_nReserves3D(node, restype, up_down, 'LossOfTrans')
*        } ..
*
*    // Reserve provision by capable units on this node
*    + sum(nuft(node, unit, f, t)${nuRescapable(restype, up_down, node, unit)},
*        + v_reserve(restype, up_down, node, unit, s, f+df_reserves(node, restype, f, t), t)
*            * [ // Account for reliability of reserves
*                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
*                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
*                ] // END * v_reserve
*        ) // END sum(nuft)
*
*    // Reserve provision from other reserve categories when they can be shared
*    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'up', restype)},
*        + v_reserve(restype_, up_down, node, unit, s, f+df_reserves(node, restype_, f, t), t)
*            * p_nuRes2Res(node, unit, restype_, up_down, restype)
*            * [ // Account for reliability of reserves
*                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
*                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
*                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
*                ] // END * v_reserve
*        ) // END sum(nuft)
*
*    // Reserve provision to this node via transfer links
*    // SHOULD THE node_fail BE EXCLUDED?
*    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},
*        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
*            * v_resTransferRightward(restype, up_down, node_, node, s, f+df_reserves(node_, restype, f, t), t)
*            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
*        ) // END sum(gn2n_directional)
*    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},
*        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
*            * v_resTransferLeftward(restype, up_down, node, node_, s, f+df_reserves(node_, restype, f, t), t)
*            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
*        ) // END sum(gn2n_directional)
*
*    =G=
*
*    // Upward Demand for reserves due to potential interconnector failures
*    [+ p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve')
*        * v_transferRightward(grid, node_fail, node, s, f, t)
*    + p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
*        * v_transferLeftward(grid, node, node_fail, s, f, t)]$(up_down eq 'up')
*    //Downward Demand for reserves due to potential interconnector failures
*    [+ p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve')
*        * v_transferLeftward(grid, node_fail, node, s, f, t)
*    + p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
*        * v_transferRightward(grid, node, node_fail, s, f, t)]$(up_down eq 'down')
*
*    // Reserve provisions to another nodes via transfer links
*    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node, node_)},
*          // Reserve transfers to other nodes increase the reserve need of the present node
*        + v_resTransferRightward(restype, up_down, node, node_, s, f+df_reserves(node, restype, f, t), t)
*            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
*        ) // END sum(gn2n_directional)
*    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node, node_)},
*          // Reserve transfers to other nodes increase the reserve need of the present node
*        + v_resTransferLeftward(restype, up_down, node_, node, s, f+df_reserves(node, restype, f, t), t)
*            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
*        ) // END sum(gn2n_directional)
*
*    // Reserve demand feasibility dummy variables
*    - vq_resDemand(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)
*    - vq_resMissing(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
*;

458
459
* --- Maximum Downward Capacity -----------------------------------------------

460
q_maxDownward(gnu(grid, node, unit), msft(m, s, f, t))
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    ${  gnuft(grid, node, unit, f, t)
        and {
            [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
                and sum(restype, nuRescapable(restype, 'down', node, unit)) // downward reserves
                ]
            // NOTE!!! Could be better to form a gnuft_reserves subset?
            or [ // the unit has an online variable
                uft_online(unit, f, t)
                and [
                    (unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeGen')) // generators with a min. load
                    or p_gnu(grid, node, unit, 'maxCons') // or consuming units with an online variable
                    ]
                ] // END or
            or [ // consuming units with investment possibility
                gnu_input(grid, node, unit)
                and [unit_investLP(unit) or unit_investMIP(unit)]
                ]
        }} ..

480
    // Energy generation/consumption
481
    + v_gen(grid, node, unit, s, f, t)
482
483

    // Considering output constraints (e.g. cV line)
484
485
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
486
            * v_gen(grid_output, node_, unit, s, f, t)
487
488
489
        ) // END sum(gngnu_constrainedOutputRatio)

    // Downward reserve participation
490
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
491
        + v_reserve(restype, 'down', node, unit, s, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
492
493
494
495
496
497
        ) // END sum(nuRescapable)

    =G= // Must be greater than minimum load or maximum consumption  (units with min-load and both generation and consumption are not allowed)

    // Generation units, greater than minload
    + p_gnu(grid, node, unit, 'unitSizeGen')
498
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
499
500
501
502
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [ // Online variables should only be generated for units with restrictions
503
504
            + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f+df_central(f,t), t)} // LP online variant
            + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f+df_central(f,t), t)} // MIP online variant
505
506
            ] // END v_online

507
508
509
510
    // Units in run-up phase neet to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
511
512
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
513
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
514
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
515
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
516
                    ]
517
                    * p_uCounter_runUpMin(unit, counter)
518
519
520
521
522
523
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)

    // Units in shutdown phase need to keep up with the shutdown rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
524
525
526
527
528
529
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                ]
530
                * p_uCounter_shutdownMin(unit, counter)
531
            ) // END sum(shutdownCounter)
532

533
534
535
536
537
    // Consuming units, greater than maxCons
    // Available capacity restrictions
    - p_unit(unit, 'availability')
        * [
            // Capacity factors for flow units
538
            + sum(flowUnit(flow, unit),
539
                + ts_cf_(flow, node, f, t, s)
540
541
542
543
544
545
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxCons')${not uft_online(unit, f, t)} // Use initial maximum if no online variables
546
547
548
549
            // !!! TEMPORARY SOLUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
            + [
                + p_gnu(grid, node, unit, 'unitSizeCons')
                + p_gnu(grid, node, unit, 'maxCons')${not p_gnu(grid, node, unit, 'unitSizeCons') > 0}
550
                    / ( p_unit(unit, 'unitCount') + 1${not p_unit(unit, 'unitCount') > 0} )
551
552
                ]
            // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
553
                * [
554
                    // Capacity online
555
556
                    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
                    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
557
558
559
560
561
562
563
564

                    // Investments to additional non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f, t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)} // NOTE! v_invest_LP also for consuming units is positive
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)} // NOTE! v_invest_MIP also for consuming units is positive
                        ) // END sum(t_invest)
565
566
                    ] // END * p_gnu(unitSizeCons)
            ] // END * p_unit(availability)
567
;
568
569
570

* --- Maximum Upwards Capacity ------------------------------------------------

571
q_maxUpward(gnu(grid, node, unit), msft(m, s, f, t))
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
    ${  gnuft(grid, node, unit, f, t)
        and {
            [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
                and sum(restype, nuRescapable(restype, 'up', node, unit)) // upward reserves
                ]
            or [
                uft_online(unit, f, t) // or the unit has an online variable
                and [
                    [unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeCons')] // consuming units with min_load
                    or [p_gnu(grid, node, unit, 'maxGen')]                          // generators with an online variable
                    ]
                ]
            or [
                gnu_output(grid, node, unit) // generators with investment possibility
                and (unit_investLP(unit) or unit_investMIP(unit))
                ]
        }}..

590
    // Energy generation/consumption
591
    + v_gen(grid, node, unit, s, f, t)
592
593
594
595

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
596
            * v_gen(grid_output, node_, unit, s, f, t)
597
598
599
        ) // END sum(gngnu_constrainedOutputRatio)

    // Upwards reserve participation
600
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
601
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
602
603
604
605
606
        ) // END sum(nuRescapable)

    =L= // must be less than available/online capacity

    // Consuming units
607
    - p_gnu(grid, node, unit, 'unitSizeCons')
608
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
609
610
611
612
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [
613
614
            + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
            + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
615
616
617
618
619
620
621
            ] // END * p_gnu(unitSizeCons)

    // Generation units
    // Available capacity restrictions
    + p_unit(unit, 'availability') // Generation units are restricted by their (available) capacity
        * [
            // Capacity factor for flow units
622
            + sum(flowUnit(flow, unit),
623
                + ts_cf_(flow, node, f, t, s)
624
625
626
627
628
629
630
631
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxGen')${not uft_online(unit, f, t)} // Use initial maxGen if no online variables
            + p_gnu(grid, node, unit, 'unitSizeGen')
                * [
632
                    // Capacity online
633
634
                    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f ,t)}
                    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
635
636
637
638
639
640
641
642

                    // Investments to non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f ,t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)}
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                        ) // END sum(t_invest)
643
644
                    ] // END * p_gnu(unitSizeGen)
            ] // END * p_unit(availability)
645

646
647
648
649
    // Units in run-up phase neet to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
650
651
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
652
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
653
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
654
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
655
                    ]
656
                    * p_uCounter_runUpMax(unit, counter)
657
658
659
660
661
662
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)

    // Units in shutdown phase need to keep up with the shutdown rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
663
664
665
666
667
668
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                ]
669
                * p_uCounter_shutdownMax(unit, counter)
670
            ) // END sum(shutdownCounter)
671
;
672

673
674
* --- Reserve Provision of Units with Investments -----------------------------

675
676
677
678
679
680
681
q_reserveProvision(nuRescapable(restypeDirectionNode(restype, up_down, node), unit), sft(s, f, t))
    ${  ord(t) <= tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and nuft(node, unit, f, t)
        and (unit_investLP(unit) or unit_investMIP(unit))
        and not ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)
        } ..

682
    + v_reserve(restype, up_down, node, unit, s, f+df_reserves(node, restype, f, t), t)
683
684
685
686
687
688
689
690
691
692
693
694
695

    =L=

    + p_nuReserves(node, unit, restype, up_down)
        * [
            + sum(grid, p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )  // Reserve sets and variables are currently lacking the grid dimension...
            + sum(t_invest(t_)${ ord(t_)<=ord(t) },
                + v_invest_LP(unit, t_)${unit_investLP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                ) // END sum(t_)
            ]
696
697
698
699
        * p_unit(unit, 'availability') // Taking into account availability...
        * [
            // ... and capacity factor for flow units
            + sum(flowUnit(flow, unit),
700
                + ts_cf_(flow, node, f, t, s)
701
702
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
703
704
705
            ] // How to consider reserveReliability in the case of investments when we typically only have "realized" time steps?
;

706
707
* --- Unit Startup and Shutdown -----------------------------------------------

708
709
710
711
q_startshut(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        }..

712
    // Units currently online
713
714
    + v_online_LP (unit, s, f+df_central(f,t), t)${uft_onlineLP (unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
715
716

    // Units previously online
717
    // The same units
718
    - v_online_LP (unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
719
                                                             and not uft_aggregator_first(unit, f, t) } // This reaches to tFirstSolve when dt = -1
720
    - v_online_MIP(unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
721
722
723
724
                                                             and not uft_aggregator_first(unit, f, t) }

    // Aggregated units just before they are turned into aggregator units
    - sum(unit_${unitAggregator_unit(unit, unit_)},
725
726
        + v_online_LP (unit_, s, f+df(f,t+dt(t)), t+dt(t))${uft_onlineLP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
        + v_online_MIP(unit_, s, f+df(f,t+dt(t)), t+dt(t))${uft_onlineMIP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
727
        )${uft_aggregator_first(unit, f, t)} // END sum(unit_)
728

729
730
    =E=

731
    // Unit startup and shutdown
732

733
    // Add startup of units dt_toStartup before the current t (no start-ups for aggregator units before they become active)
734
    + sum(unitStarttype(unit, starttype),
735
        + v_startup_LP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
736
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
737
        + v_startup_MIP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
738
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
739
        )${not [unit_aggregator(unit) and ord(t) + dt_toStartup(unit, t) <= tSolveFirst + p_unit(unit, 'lastStepNotAggregated')]} // END sum(starttype)
740

741
742
743
744
    // NOTE! According to 3d_setVariableLimits,
    // cannot start a unit if the time when the unit would become online is outside
    // the horizon when the unit has an online variable
    // --> no need to add start-ups of aggregated units to aggregator units
745

746
    // Shutdown of units at time t
747
748
749
750
    - v_shutdown_LP(unit, s, f, t)
        ${ uft_onlineLP(unit, f, t) }
    - v_shutdown_MIP(unit, s, f, t)
        ${ uft_onlineMIP(unit, f, t) }
751
;
752

753
*--- Startup Type -------------------------------------------------------------
754
// !!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
755
756
757
// This formulation doesn't work as intended when unitCount > 1, as one recent
// shutdown allows for multiple hot/warm startups on subsequent time steps.
// Pending changes.
758

759
760
761
762
q_startuptype(ms(m, s), starttypeConstrained(starttype), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and unitStarttype(unit, starttype)
        } ..
763
764

    // Startup type
765
766
    + v_startup_LP(unit, starttype, s, f, t)${ uft_onlineLP(unit, f, t) }
    + v_startup_MIP(unit, starttype, s, f, t)${ uft_onlineMIP(unit, f, t) }
767
768
769
770

    =L=

    // Subunit shutdowns within special startup timeframe
771
772
773
774
775
776
777
    + sum(unitCounter(unit, counter)${  dt_starttypeUnitCounter(starttype, unit, counter)
                                        and t_active(t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
                                        },
        + v_shutdown_LP(unit, s, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)) }
        + v_shutdown_MIP(unit, s, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)) }
778
779
780
        ) // END sum(counter)

    // NOTE: for aggregator units, shutdowns for aggregated units are not considered
781
;
782

783

784
785
*--- Online Limits with Startup Type Constraints and Investments --------------

786
787
788
789
790
791
792
793
794
q_onlineLimit(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and {
            p_unit(unit, 'minShutdownHours')
            or p_u_runUpTimeIntervals(unit)
            or unit_investLP(unit)
            or unit_investMIP(unit)
        }} ..

795
    // Online variables
796
797
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f ,t)}
798
799
800
801
802
803

    =L=

    // Number of existing units
    + p_unit(unit, 'unitCount')

804
    // Number of units unable to become online due to restrictions
805
806
807
808
809
810
811
    - sum(unitCounter(unit, counter)${  dt_downtimeUnitCounter(unit, counter)
                                        and t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                        },
        + v_shutdown_LP(unit, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
        + v_shutdown_MIP(unit, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
812
813
814
        ) // END sum(counter)

    // Number of units unable to become online due to restrictions (aggregated units in the past horizon or if they have an online variable)
815
    - sum(unitAggregator_unit(unit, unit_),
816
817
818
819
820
821
822
        + sum(unitCounter(unit, counter)${  dt_downtimeUnitCounter(unit, counter)
                                            and t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                            },
            + v_shutdown_LP(unit_, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                ${ uft_onlineLP_withPrevious(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
            + v_shutdown_MIP(unit_, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                ${ uft_onlineMIP_withPrevious(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
823
824
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
825
826
827

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
828
829
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
830
831
832
        ) // END sum(t_invest)
;

833
834
835
836
*--- Both q_offlineAfterShutdown and q_onlineOnStartup work when there is only one unit.
*    These equations prohibit single units turning on and off at the same time step.
*    Unfortunately there seems to be no way to prohibit this when unit count is > 1.
*    (it shouldn't be worthwhile anyway if there is a startup cost, but it can fall within the solution gap).
837
838
839
840
q_onlineOnStartUp(s_active(s), uft_online(unit, f, t))
    ${  sft(s, f, t)
        and sum(starttype, unitStarttype(unit, starttype))
        }..
841
842

    // Units currently online
843
844
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
845
846
847
848

    =G=

    + sum(unitStarttype(unit, starttype),
849
        + v_startup_LP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
850
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
851
        + v_startup_MIP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
852
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
853
854
855
      ) // END sum(starttype)
;

856
857
858
859
q_offlineAfterShutdown(s_active(s), uft_online(unit, f, t))
    ${  sft(s, f, t)
        and sum(starttype, unitStarttype(unit, starttype))
        }..
860

861
862
863
864
865
    // Number of existing units
    + p_unit(unit, 'unitCount')

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
866
867
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
868
869
        ) // END sum(t_invest)

870
    // Units currently online
871
872
    - v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    - v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
873
874
875

    =G=

876
877
878
879
    + v_shutdown_LP(unit, s, f, t)
        ${ uft_onlineLP(unit, f, t) }
    + v_shutdown_MIP(unit, s, f, t)
        ${ uft_onlineMIP(unit, f, t) }
880
881
;

882
883
*--- Minimum Unit Uptime ------------------------------------------------------

884
885
886
887
q_onlineMinUptime(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and  p_unit(unit, 'minOperationHours')
        } ..
888
889

    // Units currently online
890
891
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
892
893
894
895

    =G=

    // Units that have minimum operation time requirements active
896
897
898
    + sum(unitCounter(unit, counter)${  dt_uptimeUnitCounter(unit, counter)
                                        and t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) // Don't sum over counters that don't point to an active time step
                                        },
899
        + sum(unitStarttype(unit, starttype),
900
            + v_startup_LP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
901
                ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
902
            + v_startup_MIP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
903
                ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
904
            ) // END sum(starttype)
905
906
907
        ) // END sum(counter)

    // Units that have minimum operation time requirements active (aggregated units in the past horizon or if they have an online variable)
Topi Rasku's avatar
Topi Rasku committed
908
    + sum(unitAggregator_unit(unit, unit_),
909
910
911
        + sum(unitCounter(unit, counter)${  dt_uptimeUnitCounter(unit, counter)
                                            and t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) // Don't sum over counters that don't point to an active time step
                                            },
912
            + sum(unitStarttype(unit, starttype),
913
                + v_startup_LP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
914
                    ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
915
                + v_startup_MIP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
916
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
917
918
919
                ) // END sum(starttype)
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
920
921
;

922
923
* --- Cyclic Boundary Conditions for Online State -----------------------------

924
925
926
927
928
q_onlineCyclic(uss_bound(unit, s_, s), m)
    ${  ms(m, s_)
        and ms(m, s)
        and tSolveFirst = mSettings(m, 't_start')
        }..
929
930
931
932

    // Initial value of the state of the unit at the start of the sample
    + sum(mst_start(m, s, t),
        + sum(sft(s, f, t),
Topi Rasku's avatar
Topi Rasku committed
933
934
935
936
            + v_online_LP(unit, s, f+df(f,t+dt(t)), t+dt(t))
                ${uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))}
            + v_online_MIP(unit, s, f+df(f,t+dt(t)), t+dt(t))
                ${uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))}
937
938
939
940
941
942
943
944
945
946
947
948
949
950
            ) // END sum(ft)
        ) // END sum(mst_start)

    =E=

    // State of the unit at the end of the sample
    + sum(mst_end(m, s_, t_),
        + sum(sft(s_, f_, t_),
            + v_online_LP(unit, s_, f_, t_)${uft_onlineLP(unit, f_, t_)}
            + v_online_MIP(unit, s_, f_, t_)${uft_onlineMIP(unit, f_, t_)}
            ) // END sum(ft)
        ) // END sum(mst_end)
;

951
* --- Ramp Constraints --------------------------------------------------------
952

953
954
955
956
q_genRamp(ms(m, s), gnuft_ramp(grid, node, unit, f, t))
    ${  ord(t) > msStart(m, s) + 1
        and msft(m, s, f, t)
        } ..
957

958
959
    + v_genRamp(grid, node, unit, s, f, t)
        * p_stepLength(m, f, t)
960

961
    =E=
962

963
    // Change in generation over the interval: v_gen(t) - v_gen(t-1)
964
    + v_gen(grid, node, unit, s, f, t)
965

966
    // Unit generation at t-1 (except aggregator units right before the aggregation threshold, see next term)
967
    - v_gen(grid, node, unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${not uft_aggregator_first(unit, f, t)}
968
969
    // Unit generation at t-1, aggregator units right before the aggregation threshold
    + sum(unit_${unitAggregator_unit(unit, unit_)},
970
        - v_gen(grid, node, unit_, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))
971
      )${uft_aggregator_first(unit, f, t)}
972
;
973

974
* --- Ramp Up Limits ----------------------------------------------------------
975

976
977
978
979
980
981
982
983
984
985
986
987
q_rampUpLimit(ms(m, s), gnuft_ramp(grid, node, unit, f, t))
    ${  ord(t) > msStart(m, s) + 1
        and msft(m, s, f, t)
        and p_gnu(grid, node, unit, 'maxRampUp')
        and [ sum(restype, nuRescapable(restype, 'up', node, unit))
              or uft_online(unit, f, t)
              or unit_investLP(unit)
              or unit_investMIP(unit)
              ]
        } ..

    // Ramp speed of the unit?
988
    + v_genRamp(grid, node, unit, s, f, t)
989
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
990
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
991
992
993
994
995
        ) // END sum(nuRescapable)
        / p_stepLength(m, f, t)

    =L=

996
    // Ramping capability of units without an online variable
997
998
999
    + (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
1000
            + v_invest_LP(unit, t_)${not uft_online(unit, f, t) and unit_investLP(unit)}