2d_constraints.gms 96.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
$ontext
This file is part of Backbone.

Backbone is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Backbone is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Backbone.  If not, see <http://www.gnu.org/licenses/>.
$offtext

18

19
* =============================================================================
20
* --- Constraint Equation Definitions -----------------------------------------
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
* =============================================================================

* --- Energy Balance ----------------------------------------------------------

q_balance(gn(grid, node), mft(m, f, t))${   not p_gn(grid, node, 'boundAll')
                                            } .. // Energy/power balance dynamics solved using implicit Euler discretization

    // The left side of the equation is the change in the state (will be zero if the node doesn't have a state)
    + p_gn(grid, node, 'energyStoredPerUnitOfState')${gn_state(grid, node)} // Unit conversion between v_state of a particular node and energy variables (defaults to 1, but can have node based values if e.g. v_state is in Kelvins and each node has a different heat storage capacity)
        * [
            + v_state(grid, node, f+df_central(f,t), t)                   // The difference between current
            - v_state(grid, node, f+df(f,t+dt(t)), t+dt(t))                     // ... and previous state of the node
            ]

    =E=

    // The right side of the equation contains all the changes converted to energy terms
    + p_stepLength(m, f, t) // Multiply with the length of the timestep to convert power into energy
        * (
            // Self discharge out of the model boundaries
41
42
            - p_gn(grid, node, 'selfDischargeLoss')${ gn_state(grid, node) }
                * v_state(grid, node, f+df_central(f,t), t) // The current state of the node
43
44

            // Energy diffusion from this node to neighbouring nodes
45
            - sum(to_node${ gnn_state(grid, node, to_node) },
46
                + p_gnn(grid, node, to_node, 'diffCoeff')
47
                    * v_state(grid, node, f+df_central(f,t), t)
48
49
50
                ) // END sum(to_node)

            // Energy diffusion from neighbouring nodes to this node
51
            + sum(from_node${ gnn_state(grid, from_node, node) },
52
                + p_gnn(grid, from_node, node, 'diffCoeff')
53
                    * v_state(grid, from_node, f+df_central(f,t), t) // Incoming diffusion based on the state of the neighbouring node
54
55
56
                ) // END sum(from_node)

            // Controlled energy transfer, applies when the current node is on the left side of the connection
57
            - sum(node_${ gn2n_directional(grid, node, node_) },
58
                + (1 - p_gnn(grid, node, node_, 'transferLoss')) // Reduce transfer losses
59
                    * v_transfer(grid, node, node_, f, t)
60
                + p_gnn(grid, node, node_, 'transferLoss') // Add transfer losses back if transfer is from this node to another node
61
                    * v_transferRightward(grid, node, node_, f, t)
62
63
64
                ) // END sum(node_)

            // Controlled energy transfer, applies when the current node is on the right side of the connection
65
66
            + sum(node_${ gn2n_directional(grid, node_, node) },
                + v_transfer(grid, node_, node, f, t)
67
                - p_gnn(grid, node_, node, 'transferLoss') // Reduce transfer losses if transfer is from another node to this node
68
                    * v_transferRightward(grid, node_, node, f, t)
69
70
71
72
73
                ) // END sum(node_)

            // Interactions between the node and its units
            + sum(gnuft(grid, node, unit, f, t),
                + v_gen(grid, node, unit, f, t) // Unit energy generation and consumption
74
                )
75
76
77
78
79
80
81
82
83
84
85

            // Spilling energy out of the endogenous grids in the model
            - v_spill(grid, node, f, t)${node_spill(node)}

            // Power inflow and outflow timeseries to/from the node
            + ts_influx_(grid, node, f, t)   // Incoming (positive) and outgoing (negative) absolute value time series

            // Dummy generation variables, for feasibility purposes
            + vq_gen('increase', grid, node, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
            - vq_gen('decrease', grid, node, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
    ) // END * p_stepLength
86
;
87
88

* --- Reserve Demand ----------------------------------------------------------
89
90
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.
91

92
93
94
95
96
97
q_resDemand(restypeDirectionNode(restype, up_down, node), ft(f, t))
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
            and ft_realized(f, t)
            ]
        } ..
98
99
    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, up_down, node, unit)},
100
        + v_reserve(restype, up_down, node, unit, f+df_reserves(node, restype, f, t), t)
101
102
        ) // END sum(nuft)

103
104
105
106
107
108
    // Reserve provision from other reserve categories when they can be shared
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype, up_down, restype_)},
        + v_reserve(restype_, up_down, node, unit, f+df_reserves(node, restype_, f, t), t)
            * p_nuRes2Res(node, unit, restype, up_down, restype_)
        ) // END sum(nuft)

109
    // Reserve provision to this node via transfer links
110
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},
111
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
112
            * v_resTransferRightward(restype, up_down, node_, node, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
113
        ) // END sum(gn2n_directional)
114
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},
115
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
116
            * v_resTransferLeftward(restype, up_down, node, node_, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
117
118
119
120
121
122
123
124
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves
    + ts_reserveDemand_(restype, up_down, node, f, t)${p_nReserves(node, restype, 'use_time_series')}
    + p_nReserves(node, restype, up_down)${not p_nReserves(node, restype, 'use_time_series')}

125
126
    // Reserve demand increase because of units
    + sum(nuft(node, unit, f, t)${p_nuReserves(node, unit, restype, 'reserve_increase_ratio')}, // Could be better to have 'reserve_increase_ratio' separately for up and down directions
127
        + sum(gnu(grid, node, unit), v_gen(grid, node, unit, f, t)) // Reserve sets and variables are currently lacking the grid dimension...
128
129
130
            * p_nuReserves(node, unit, restype, 'reserve_increase_ratio')
        ) // END sum(nuft)

131
    // Reserve provisions to another nodes via transfer links
132
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},   // If trasferring reserves to another node, increase your own reserves by same amount
133
        + v_resTransferRightward(restype, up_down, node, node_, f+df_reserves(node, restype, f, t), t)
134
        ) // END sum(gn2n_directional)
135
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},   // If trasferring reserves to another node, increase your own reserves by same amount
136
        + v_resTransferLeftward(restype, up_down, node_, node, f+df_reserves(node, restype, f, t), t)
137
138
139
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
140
141
    - vq_resDemand(restype, up_down, node, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, up_down, node, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
142
;
143
144
145

* --- Maximum Downward Capacity -----------------------------------------------

146
q_maxDownward(m, gnuft(grid, node, unit, f, t))${   [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
                                                        and sum(restype, nuRescapable(restype, 'down', node, unit)) // downward reserves
                                                        ]
                                                    // NOTE!!! Could be better to form a gnuft_reserves subset?
                                                    or [ // the unit has an online variable
                                                        uft_online(unit, f, t)
                                                        and [
                                                            (unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeGen')) // generators with a min. load
                                                            or p_gnu(grid, node, unit, 'maxCons') // or consuming units with an online variable
                                                            ]
                                                        ] // END or
                                                    or [ // consuming units with investment possibility
                                                        gnu_input(grid, node, unit)
                                                        and [unit_investLP(unit) or unit_investMIP(unit)]
                                                        ]
                                                    } ..
    // Energy generation/consumption
    + v_gen(grid, node, unit, f, t)

    // Considering output constraints (e.g. cV line)
166
167
168
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
            * v_gen(grid_output, node_, unit, f, t)
169
170
171
        ) // END sum(gngnu_constrainedOutputRatio)

    // Downward reserve participation
172
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
173
        + v_reserve(restype, 'down', node, unit, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
174
175
176
177
178
179
        ) // END sum(nuRescapable)

    =G= // Must be greater than minimum load or maximum consumption  (units with min-load and both generation and consumption are not allowed)

    // Generation units, greater than minload
    + p_gnu(grid, node, unit, 'unitSizeGen')
180
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
181
182
183
184
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [ // Online variables should only be generated for units with restrictions
185
186
            + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f+df_central(f,t), t)} // LP online variant
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f+df_central(f,t), t)} // MIP online variant
187
188
            ] // END v_online

Niina Helistö's avatar
Niina Helistö committed
189
190
191
    + [
        // Units that are in the run-up phase need to keep up with the run-up ramp rate (contained in p_ut_runUp)
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
192
193
            * sum(t_active(t_)${    ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                    and ord(t_) <= ord(t)},
Niina Helistö's avatar
Niina Helistö committed
194
                + sum(unitStarttype(unit, starttype),
195
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
196
197
198
199
200
201
202
203
                        * sum(t_full(t__)${ord(t__) = p_u_runUpTimeIntervalsCeil(unit) - ord(t) - dt_next(t) + 1 + ord(t_)}, // last step in the interval
                            + p_ut_runUp(unit, t__)
*                                * 1 // test values [0,1] to provide some flexibility
                            ) // END sum(t__)
                    ) // END sum(unitStarttype)
                ) // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by the minimum load (contained in p_ut_runUp(unit, 't00000'))
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
204
            * sum(t_active(t_)${ ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t)) },
Niina Helistö's avatar
Niina Helistö committed
205
                + sum(unitStarttype(unit, starttype),
206
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
207
208
209
210
211
212
213
214
                        * sum(t_full(t__)${ord(t__) = 1}, p_ut_runUp(unit, t__))
                    ) // END sum(unitStarttype)
                ) // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}

    + [
        // Units that are in the shutdown phase need to keep up with the shutdown ramp rate (contained in p_ut_shutdown)
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
215
216
            * sum(t_active(t_)${    ord(t_) >= ord(t) + dt_next(t) + dt_toShutdown(unit, t + dt_next(t))
                                    and ord(t_) < ord(t)},
217
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
218
219
                    * sum(t_full(t__)${ord(t__) = ord(t) - ord(t_) + 1},
                        + p_ut_shutdown(unit, t__)
220
                        ) // END sum(t__)
Niina Helistö's avatar
Niina Helistö committed
221
222
223
224
                ) // END sum(t_)
        // Units that are in the first time interval of the shutdown phase are limited by the minimum load (contained in p_ut_shutdown(unit, 't00000'))
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * (
225
                + v_shutdown(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
226
227
228
                    * sum(t_full(t__)${ord(t__) = 1}, p_ut_shutdown(unit, t__))
                ) // END * p_gnu(unitSizeGen)
        ]${uft_shutdownTrajectory(unit, f, t)}
229

230
231
232
233
234
    // Consuming units, greater than maxCons
    // Available capacity restrictions
    - p_unit(unit, 'availability')
        * [
            // Capacity factors for flow units
235
            + sum(flowUnit(flow, unit),
236
237
238
239
240
241
242
243
244
                + ts_cf_(flow, node, f, t)
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxCons')${not uft_online(unit, f, t)} // Use initial maximum if no online variables
            + p_gnu(grid, node, unit, 'unitSizeCons')
                * [
245
                    // Capacity online
246
247
                    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
                    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
248
249
250
251
252
253
254
255

                    // Investments to additional non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f, t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)} // NOTE! v_invest_LP also for consuming units is positive
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)} // NOTE! v_invest_MIP also for consuming units is positive
                        ) // END sum(t_invest)
256
257
                    ] // END * p_gnu(unitSizeCons)
            ] // END * p_unit(availability)
258
;
259
260
261

* --- Maximum Upwards Capacity ------------------------------------------------

262
q_maxUpward(m, gnuft(grid, node, unit, f, t))${ [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
                                                    and sum(restype, nuRescapable(restype, 'up', node, unit)) // upward reserves
                                                    ]
                                                or [
                                                    uft_online(unit, f, t) // or the unit has an online variable
                                                        and [
                                                            [unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeCons')] // consuming units with min_load
                                                            or [p_gnu(grid, node, unit, 'maxGen')]                          // generators with an online variable
                                                            ]
                                                    ]
                                                or [
                                                    gnu_output(grid, node, unit) // generators with investment possibility
                                                    and (unit_investLP(unit) or unit_investMIP(unit))
                                                    ]
                                                }..
    // Energy generation/consumption
    + v_gen(grid, node, unit, f, t)

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
            * v_gen(grid_output, node_, unit, f, t)
        ) // END sum(gngnu_constrainedOutputRatio)

    // Upwards reserve participation
287
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
288
        + v_reserve(restype, 'up', node, unit, f+df_reserves(node, restype, f, t), t)
289
290
291
292
293
294
        ) // END sum(nuRescapable)

    =L= // must be less than available/online capacity

    // Consuming units
    + p_gnu(grid, node, unit, 'unitSizeCons')
295
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
296
297
298
299
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [
300
301
            + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
302
303
304
305
306
307
308
            ] // END * p_gnu(unitSizeCons)

    // Generation units
    // Available capacity restrictions
    + p_unit(unit, 'availability') // Generation units are restricted by their (available) capacity
        * [
            // Capacity factor for flow units
309
            + sum(flowUnit(flow, unit),
310
311
312
313
314
315
316
317
318
                + ts_cf_(flow, node, f, t)
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxGen')${not uft_online(unit, f, t)} // Use initial maxGen if no online variables
            + p_gnu(grid, node, unit, 'unitSizeGen')
                * [
319
                    // Capacity online
320
321
                    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f ,t)}
                    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
322
323
324
325
326
327
328
329

                    // Investments to non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f ,t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)}
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                        ) // END sum(t_invest)
330
331
                    ] // END * p_gnu(unitSizeGen)
            ] // END * p_unit(availability)
332

Niina Helistö's avatar
Niina Helistö committed
333
334
335
    + [
        // Units that are in the run-up phase need to keep up with the run-up ramp rate (contained in p_ut_runUp)
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
336
337
            * sum(t_active(t_)${    ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                    and ord(t_) <= ord(t)},
Niina Helistö's avatar
Niina Helistö committed
338
                + sum(unitStarttype(unit, starttype),
339
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
340
341
342
343
344
345
346
                        * sum(t_full(t__)${ord(t__) = p_u_runUpTimeIntervalsCeil(unit) - ord(t) - dt_next(t) + 1 + ord(t_)}, // last step in the interval
                            + p_ut_runUp(unit, t__)
                            ) // END sum(t__)
                    ) // END sum(unitStarttype)
                ) // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by the p_u_maxOutputInLastRunUpInterval
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
347
            * sum(t_active(t_)${ ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t)) },
Niina Helistö's avatar
Niina Helistö committed
348
                + sum(unitStarttype(unit, starttype),
349
                    + v_startup(unit, starttype, f+df(f,t_), t_)
350
                        * p_u_maxOutputInLastRunUpInterval(unit)
Niina Helistö's avatar
Niina Helistö committed
351
352
353
354
355
356
357
                    ) // END sum(unitStarttype)
                ) // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}

    + [
        // Units that are in the shutdown phase need to keep up with the shutdown ramp rate (contained in p_ut_shutdown)
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
358
359
            * sum(t_active(t_)${    ord(t_) >= ord(t) + dt_next(t) + dt_toShutdown(unit, t + dt_next(t))
                                    and ord(t_) < ord(t)},
360
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
361
362
363
364
365
366
367
                    * sum(t_full(t__)${ord(t__) = ord(t) - ord(t_) + 1},
                        + p_ut_shutdown(unit, t__)
                        ) // END sum(t__)
                ) // END sum(t_)
        // Units that are in the first time interval of the shutdown phase are limited by p_u_maxOutputInFirstShutdownInterval
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * (
368
                + v_shutdown(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
369
370
371
                    * p_u_maxOutputInFirstShutdownInterval(unit)
                ) // END * p_gnu(unitSizeGen)
        ]${uft_shutdownTrajectory(unit, f, t)}
372
;
373

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
* --- Reserve Provision of Units with Investments -----------------------------

q_reserveProvision(nuRescapable(restypeDirectionNode(restype, up_down, node), unit), ft(f, t))${ ord(t) <= tSolveFirst + p_nReserves(node, restype, 'reserve_length')
                                                                                                 and nuft(node, unit, f, t)
                                                                                                 and (unit_investLP(unit) or unit_investMIP(unit))
                                                                                                 and not ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)
                                                                                                 } ..
    + v_reserve(restype, up_down, node, unit, f+df_reserves(node, restype, f, t), t)

    =L=

    + p_nuReserves(node, unit, restype, up_down)
        * [
            + sum(grid, p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )  // Reserve sets and variables are currently lacking the grid dimension...
            + sum(t_invest(t_)${ ord(t_)<=ord(t) },
                + v_invest_LP(unit, t_)${unit_investLP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                ) // END sum(t_)
            ]
395
396
397
398
399
400
401
402
        * p_unit(unit, 'availability') // Taking into account availability...
        * [
            // ... and capacity factor for flow units
            + sum(flowUnit(flow, unit),
                + ts_cf_(flow, node, f, t)
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ]
403
404
405
406
407
408
        * [
            + 1${ft_realized(f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
            + p_nuReserves(node, unit, restype, 'reserveReliability')${not ft_realized(f+df_reserves(node, restype, f, t), t)}
            ] // How to consider reserveReliability in the case of investments when we typically only have "realized" time steps?
;

409
410
* --- Unit Startup and Shutdown -----------------------------------------------

411
q_startshut(m, uft_online(unit, f, t)) ..
412
413
414
    // Units currently online
    + v_online_LP (unit, f+df_central(f,t), t)${uft_onlineLP (unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
415
416

    // Units previously online
417
418

    // The same units
419
    - v_online_LP (unit, f+df(f,t+dt(t)), t+dt(t))${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
420
                                                             and not uft_aggregator_first(unit, f, t) } // This reaches to tFirstSolve when dt = -1
421
    - v_online_MIP(unit, f+df(f,t+dt(t)), t+dt(t))${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
422
423
424
425
                                                             and not uft_aggregator_first(unit, f, t) }

    // Aggregated units just before they are turned into aggregator units
    - sum(unit_${unitAggregator_unit(unit, unit_)},
426
427
        + v_online_LP (unit_, f+df(f,t+dt(t)), t+dt(t))${uft_onlineLP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
        + v_online_MIP(unit_, f+df(f,t+dt(t)), t+dt(t))${uft_onlineMIP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
428
        )${uft_aggregator_first(unit, f, t)} // END sum(unit_)
429

430
431
    =E=

432
    // Unit startup and shutdown
433

434
    // Add startup of units dt_toStartup before the current t (no start-ups for aggregator units before they become active)
435
    + sum(unitStarttype(unit, starttype),
436
        + v_startup(unit, starttype, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
437
        )${not [unit_aggregator(unit) and ord(t) + dt_toStartup(unit, t) <= tSolveFirst + p_unit(unit, 'lastStepNotAggregated')]} // END sum(starttype)
438

439
440
441
442
    // NOTE! According to 3d_setVariableLimits,
    // cannot start a unit if the time when the unit would become online is outside
    // the horizon when the unit has an online variable
    // --> no need to add start-ups of aggregated units to aggregator units
443

444
    // Shutdown of units at time t
445
    - v_shutdown(unit, f, t)
446
;
447

448
*--- Startup Type -------------------------------------------------------------
449
// !!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
450
451
452
// This formulation doesn't work as intended when unitCount > 1, as one recent
// shutdown allows for multiple hot/warm startups on subsequent time steps.
// Pending changes.
453

454
q_startuptype(m, starttypeConstrained(starttype), uft_online(unit, f, t))${ unitStarttype(unit, starttype) } ..
455
456

    // Startup type
457
    + v_startup(unit, starttype, f, t)
458
459
460
461

    =L=

    // Subunit shutdowns within special startup timeframe
Topi Rasku's avatar
Topi Rasku committed
462
463
464
    + sum(unitCounter(unit, counter)${dt_starttypeUnitCounter(starttype, unit, counter)},
        + v_shutdown(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
            ${t_active(t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))}
465
466
467
        ) // END sum(counter)

    // NOTE: for aggregator units, shutdowns for aggregated units are not considered
468
;
469

470

471
472
*--- Online Limits with Startup Type Constraints and Investments --------------

473
q_onlineLimit(m, uft_online(unit, f, t))${  p_unit(unit, 'minShutdownHours')
474
                                            or p_u_runUpTimeIntervals(unit)
475
476
477
478
                                            or unit_investLP(unit)
                                            or unit_investMIP(unit)
                                            } ..
    // Online variables
479
480
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f ,t)}
481
482
483
484
485
486

    =L=

    // Number of existing units
    + p_unit(unit, 'unitCount')

487
    // Number of units unable to become online due to restrictions
Topi Rasku's avatar
Topi Rasku committed
488
489
490
    - sum(unitCounter(unit, counter)${dt_downtimeUnitCounter(unit, counter)},
        + v_shutdown(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
            ${t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))}
491
492
493
494
        ) // END sum(counter)

    // Number of units unable to become online due to restrictions (aggregated units in the past horizon or if they have an online variable)
    - sum(unit_${unitAggregator_unit(unit, unit_)},
Topi Rasku's avatar
Topi Rasku committed
495
496
497
        + sum(unitCounter(unit, counter)${dt_downtimeUnitCounter(unit, counter)},
            + v_shutdown(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                ${t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))}
498
499
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
500
501
502

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
503
504
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
505
506
507
        ) // END sum(t_invest)
;

508
509
510
511
*--- Both q_offlineAfterShutdown and q_onlineOnStartup work when there is only one unit.
*    These equations prohibit single units turning on and off at the same time step.
*    Unfortunately there seems to be no way to prohibit this when unit count is > 1.
*    (it shouldn't be worthwhile anyway if there is a startup cost, but it can fall within the solution gap).
512
513
514
515
516
517
518
519
520
q_onlineOnStartUp(uft_online(unit, f, t))${sum(starttype, unitStarttype(unit, starttype))}..

    // Units currently online
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}

    =G=

    + sum(unitStarttype(unit, starttype),
521
        + v_startup(unit, starttype, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))  //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
522
523
524
525
526
      ) // END sum(starttype)
;

q_offlineAfterShutdown(uft_online(unit, f, t))${sum(starttype, unitStarttype(unit, starttype))}..

527
528
529
530
531
    // Number of existing units
    + p_unit(unit, 'unitCount')

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
532
533
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
534
535
        ) // END sum(t_invest)

536
537
538
539
540
541
    // Units currently online
    - v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    - v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}

    =G=

542
    + v_shutdown(unit, f, t)
543
544
;

545
546
*--- Minimum Unit Uptime ------------------------------------------------------

547
q_onlineMinUptime(m, uft_online(unit, f, t))${  p_unit(unit, 'minOperationHours')
548
549
550
                                                } ..

    // Units currently online
551
552
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
553
554
555
556

    =G=

    // Units that have minimum operation time requirements active
Topi Rasku's avatar
Topi Rasku committed
557
    + sum(unitCounter(unit, counter)${dt_uptimeUnitCounter(unit, counter)},
558
        + sum(unitStarttype(unit, starttype),
Topi Rasku's avatar
Topi Rasku committed
559
560
            + v_startup(unit, starttype, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
                ${t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))}
561
            ) // END sum(starttype)
562
563
564
        ) // END sum(counter)

    // Units that have minimum operation time requirements active (aggregated units in the past horizon or if they have an online variable)
Topi Rasku's avatar
Topi Rasku committed
565
566
    + sum(unitAggregator_unit(unit, unit_),
        + sum(unitCounter(unit, counter)${dt_uptimeUnitCounter(unit, counter)},
567
            + sum(unitStarttype(unit, starttype),
Topi Rasku's avatar
Topi Rasku committed
568
569
                + v_startup(unit, starttype, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
                    ${t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))}
570
571
572
                ) // END sum(starttype)
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
573
574
;

575
* --- Ramp Constraints --------------------------------------------------------
576
577
578
579

q_genRamp(m, s, gnuft_ramp(grid, node, unit, f, t))${  ord(t) > msStart(m, s) + 1
                                                       and msft(m, s, f, t)
                                                       } ..
580

581
    + v_genRamp(grid, node, unit, f, t) * p_stepLength(m, f, t)
582

583
    =E=
584

585
    // Change in generation over the interval: v_gen(t) - v_gen(t-1)
586
    + v_gen(grid, node, unit, f, t)
587

588
589
590
591
    // Unit generation at t-1 (except aggregator units right before the aggregation threshold, see next term)
    - v_gen(grid, node, unit, f+df(f,t+dt(t)), t+dt(t))${not uft_aggregator_first(unit, f, t)}
    // Unit generation at t-1, aggregator units right before the aggregation threshold
    + sum(unit_${unitAggregator_unit(unit, unit_)},
592
        - v_gen(grid, node, unit_, f+df(f,t+dt(t)), t+dt(t))
593
      )${uft_aggregator_first(unit, f, t)}
594
;
595

596
* --- Ramp Up Limits ----------------------------------------------------------
597
598
599
600

q_rampUpLimit(m, s, gnuft_ramp(grid, node, unit, f, t))${  ord(t) > msStart(m, s) + 1
                                                           and msft(m, s, f, t)
                                                           and p_gnu(grid, node, unit, 'maxRampUp')
601
602
603
604
605
                                                           and [ sum(restype, nuRescapable(restype, 'up', node, unit))
                                                                 or uft_online(unit, f, t)
                                                                 or unit_investLP(unit)
                                                                 or unit_investMIP(unit)
                                                                 ]
606
                                                           } ..
607
    + v_genRamp(grid, node, unit, f, t)
608
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
609
        + v_reserve(restype, 'up', node, unit, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
610
611
612
613
614
        ) // END sum(nuRescapable)
        / p_stepLength(m, f, t)

    =L=

615
    // Ramping capability of units without an online variable
616
617
618
619
620
621
622
623
624
625
626
627
    + (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
            + v_invest_LP(unit, t_)${not uft_onlineLP(unit, f, t) and unit_investLP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
            + v_invest_MIP(unit, t_)${not uft_onlineMIP(unit, f, t) and unit_investMIP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

628
    // Ramping capability of units with an online variable
629
630
631
632
633
634
635
636
    + (
        + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

Niina Helistö's avatar
Niina Helistö committed
637
638
639
    + [
        // Units that are in the run-up phase need to keep up with the run-up ramp rate
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
640
641
            * sum(t_active(t_)${    ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                    and ord(t_) <= ord(t)},
Niina Helistö's avatar
Niina Helistö committed
642
                + sum(unitStarttype(unit, starttype),
643
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
644
645
646
647
648
649
                        * p_unit(unit, 'rampSpeedToMinLoad')
                        * 60   // Unit conversion from [p.u./min] to [p.u./h]
                  ) // END sum(unitStarttype)
              ) // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by rampSpeedToMinLoad and maxRampUp
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
650
651
            * sum(t_active(t_)${    ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                    and uft_startupTrajectory(unit, f, t)},
Niina Helistö's avatar
Niina Helistö committed
652
                + sum(unitStarttype(unit, starttype),
653
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
654
655
656
657
658
                        * max(p_unit(unit, 'rampSpeedToMinLoad'), p_gnu(grid, node, unit, 'maxRampUp')) // could also be weighted average from 'maxRampUp' and 'rampSpeedToMinLoad'
                        * 60   // Unit conversion from [p.u./min] to [p.u./h]
                  ) // END sum(unitStarttype)
              ) // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}
659

660
    // Shutdown of consumption units from full load
661
    + v_shutdown(unit, f, t)${uft_online(unit, f, t) and gnu_input(grid, node, unit)}
662
        * p_gnu(grid, node, unit, 'unitSizeTot')
663
;
664

665
* --- Ramp Down Limits --------------------------------------------------------
666
667
668
669

q_rampDownLimit(m, s, gnuft_ramp(grid, node, unit, f, t))${  ord(t) > msStart(m, s) + 1
                                                             and msft(m, s, f, t)
                                                             and p_gnu(grid, node, unit, 'maxRampDown')
670
671
672
673
674
                                                             and [ sum(restype, nuRescapable(restype, 'down', node, unit))
                                                                   or uft_online(unit, f, t)
                                                                   or unit_investLP(unit)
                                                                   or unit_investMIP(unit)
                                                                   ]
675
                                                             } ..
676
    + v_genRamp(grid, node, unit, f, t)
677
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
678
        + v_reserve(restype, 'down', node, unit, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
679
680
681
682
683
        ) // END sum(nuRescapable)
        / p_stepLength(m, f, t)

    =G=

684
    // Ramping capability of units without online variable
685
686
687
688
689
690
691
692
693
694
695
696
    - (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
            + v_invest_LP(unit, t_)${not uft_onlineLP(unit, f, t) and unit_investLP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
            + v_invest_MIP(unit, t_)${not uft_onlineMIP(unit, f, t) and unit_investMIP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnu(grid, node, unit, 'maxRampDown')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

697
    // Ramping capability of units that are online
698
699
700
701
702
703
704
705
    - (
        + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnu(grid, node, unit, 'maxRampDown')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

706
    // Shutdown of generation units from full load
707
    - v_shutdown(unit, f, t)${   uft_online(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
708
709
                                                 and gnu_output(grid, node, unit)
                                                 and not uft_shutdownTrajectory(unit, f, t)}
710
        * p_gnu(grid, node, unit, 'unitSizeTot')
711

Niina Helistö's avatar
Niina Helistö committed
712
713
714
    + [
        // Units that are in the shutdown phase need to keep up with the shutdown ramp rate
        - p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
715
716
            * sum(t_active(t_)${    ord(t_) >= ord(t) + dt_toShutdown(unit, t)
                                    and ord(t_) < ord(t) + dt(t)},
717
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
718
719
720
                    * p_unit(unit, 'rampSpeedFromMinLoad')
                    * 60   // Unit conversion from [p.u./min] to [p.u./h]
              ) // END sum(t_)
721

Niina Helistö's avatar
Niina Helistö committed
722
723
724
        // Units that are in the first time interval of the shutdown phase are limited rampSpeedFromMinLoad and maxRampDown
        - p_gnu(grid, node, unit, 'unitSizeGen')
            * (
725
                + v_shutdown(unit, f+df(f,t+dt(t)), t+dt(t))
Niina Helistö's avatar
Niina Helistö committed
726
727
728
729
730
731
732
                    * max(p_unit(unit, 'rampSpeedFromMinLoad'), p_gnu(grid, node, unit, 'maxRampDown')) // could also be weighted average from 'maxRampDown' and 'rampSpeedFromMinLoad'
                    * 60   // Unit conversion from [p.u./min] to [p.u./h]
                ) // END * p_gnu(unitSizeGen)

        // Units just starting the shutdown phase are limited by the maxRampDown
        - p_gnu(grid, node, unit, 'unitSizeGen')
            * (
733
                + v_shutdown(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
734
735
736
737
                    * p_gnu(grid, node, unit, 'maxRampDown')
                    * 60   // Unit conversion from [p.u./min] to [p.u./h]
                ) // END * p_gnu(unitSizeGen)
        ]${uft_shutdownTrajectory(unit, f, t)}
738
739
;

740
741
742
743
744
745
746
* --- Ramps separated into upward and downward ramps --------------------------

q_rampUpDown(m, s, gnuft_ramp(grid, node, unit, f, t))${  ord(t) > msStart(m, s) + 1
                                                          and msft(m, s, f, t)
                                                          and sum(slack, gnuft_rampCost(grid, node, unit, slack, f, t))
                                                          } ..

747
    + v_genRamp(grid, node, unit, f, t)
748

749
    =E=
750

751
752
753
754
755
    // Upward and downward ramp categories
    + sum(slack${ gnuft_rampCost(grid, node, unit, slack, f, t) },
        + v_genRampUpDown(grid, node, unit, slack, f, t)$upwardSlack(slack)
        - v_genRampUpDown(grid, node, unit, slack, f, t)$downwardSlack(slack)
      ) // END sum(slack)
756
757
;

Niina Helistö's avatar
Niina Helistö committed
758
* --- Upward and downward ramps constrained by slack boundaries ---------------
759
760
761
762
763

q_rampSlack(m, s, gnuft_rampCost(grid, node, unit, slack, f, t))${  ord(t) > msStart(m, s) + 1
                                                                    and msft(m, s, f, t)
                                                                    } ..

764
    + v_genRampUpDown(grid, node, unit, slack, f, t)
765

766
    =L=
767
768

    // Ramping capability of units without an online variable
769
770
771
772
773
774
775
776
777
778
779
    + (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
            + v_invest_LP(unit, t_)${not uft_onlineLP(unit, f, t) and unit_investLP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
            + v_invest_MIP(unit, t_)${not uft_onlineMIP(unit, f, t) and unit_investMIP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
780
781

    // Ramping capability of units with an online variable
782
783
784
785
786
787
788
    + (
        + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
789

Niina Helistö's avatar
Niina Helistö committed
790
791
792
    + [
        // Ramping of units that are in the run-up phase
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
793
794
            * sum(t_active(t_)${    ord(t_) >= ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                    and ord(t_) <= ord(t)},
Niina Helistö's avatar
Niina Helistö committed
795
                + sum(unitStarttype(unit, starttype),
796
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
797
798
799
800
801
                        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
                        * 60   // Unit conversion from [p.u./min] to [p.u./h]
                  ) // END sum(unitStarttype)
              ) // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}
802
803

    // Shutdown of consumption units from full load
804
    + v_shutdown(unit, f, t)${uft_online(unit, f, t) and gnu_input(grid, node, unit)}
805
806
807
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
808

809
    // Shutdown of generation units from full load and ramping of units in the beginning of the shutdown phase
810
    + v_shutdown(unit, f, t)${uft_online(unit, f, t) and gnu_output(grid, node, unit)}
811
812
813
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
814

Niina Helistö's avatar
Niina Helistö committed
815
816
817
    + [
        // Ramping of units that are in the shutdown phase
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
818
819
            * sum(t_active(t_)${    ord(t_) >= ord(t) + dt_toShutdown(unit, t)
                                    and ord(t_) <= ord(t) + dt(t)},
820
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
821
822
823
824
                    * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
                    * 60   // Unit conversion from [p.u./min] to [p.u./h]
              ) // END sum(t_)
        ]${uft_shutdownTrajectory(unit, f, t)}
825
;
826

827
828
829
830
831
832
833
* --- Fixed Output Ratio ------------------------------------------------------

q_outputRatioFixed(gngnu_fixedOutputRatio(grid, node, grid_, node_, unit), ft(f, t))${  uft(unit, f, t)
                                                                                        } ..

    // Generation in grid
    + v_gen(grid, node, unit, f, t)
834
        / p_gnu(grid, node, unit, 'conversionFactor')
835
836
837
838
839

    =E=

    // Generation in grid_
    + v_gen(grid_, node_, unit, f, t)
840
        / p_gnu(grid_, node_, unit, 'conversionFactor')
841
;
842
843
844
845
846
847
848
849

* --- Constrained Output Ratio ------------------------------------------------

q_outputRatioConstrained(gngnu_constrainedOutputRatio(grid, node, grid_, node_, unit), ft(f, t))${  uft(unit, f, t)
                                                                                                    } ..

    // Generation in grid
    + v_gen(grid, node, unit, f, t)
850
        / p_gnu(grid, node, unit, 'conversionFactor')
851
852
853
854
855

    =G=

    // Generation in grid_
    + v_gen(grid_, node_, unit, f, t)
856
        / p_gnu(grid_, node_, unit, 'conversionFactor')
Juha Kiviluoma's avatar
Juha Kiviluoma committed
857
;
858
859
860

* --- Direct Input-Output Conversion ------------------------------------------

861
q_conversionDirectInputOutput(suft(effDirect(effGroup), unit, f, t)) ..
862
863

    // Sum over endogenous energy inputs
864
    - sum(gnu_input(grid, node, unit)${not p_gnu(grid, node, unit, 'doNotOutput')},
865
866
867
868
869
870
871
872
        + v_gen(grid, node, unit, f, t)
        ) // END sum(gnu_input)

    // Sum over fuel energy inputs
    + sum(uFuel(unit, 'main', fuel),
        + v_fuelUse(fuel, unit, f, t)
        ) // END sum(uFuel)

873
874
    // Main fuel is not used during run-up and shutdown phases
    + [
Niina Helistö's avatar
Niina Helistö committed
875
876
877
878
        // Units that are in the run-up phase need to keep up with the run-up ramp rate (contained in p_ut_runUp)
        + sum(gnu_output(grid, node, unit)$uft_startupTrajectory(unit, f, t),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
Topi Rasku's avatar
Topi Rasku committed
879
880
881
            * sum(t_active(t_)${    ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                    and ord(t_) <= ord(t)
                                    },
Niina Helistö's avatar
Niina Helistö committed
882
                + sum(unitStarttype(unit, starttype),
883
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
884
885
886
887
888
889
890
891
892
                        * sum(t_full(t__)${ ord(t__) = p_u_runUpTimeIntervalsCeil(unit) - ord(t) - dt_next(t) + 1 + ord(t_) }, // last step in the interval
                            + p_ut_runUp(unit, t__)
                          ) // END sum(t__)
                  ) // END sum(unitStarttype)
              )  // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by the minimum load (contained in p_ut_runUp(unit, 't00000'))
        + sum(gnu_output(grid, node, unit)$uft_startupTrajectory(unit, f, t),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
Topi Rasku's avatar
Topi Rasku committed
893
            * sum(t_active(t_)${ ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t)) },
Niina Helistö's avatar
Niina Helistö committed
894
                + sum(unitStarttype(unit, starttype),
895
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
896
897
898
899
900
901
902
903
                        * sum(t_full(t__)${ord(t__) = 1}, p_ut_runUp(unit, t__))
                  ) // END sum(unitStarttype)
              )  // END sum(t_)

        // Units that are in the shutdown phase need to keep up with the shutdown ramp rate (contained in p_ut_shutdown)
        + sum(gnu_output(grid, node, unit)$uft_shutdownTrajectory(unit, f, t),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
Topi Rasku's avatar
Topi Rasku committed
904
905
906
            * sum(t_active(t_)${    ord(t_) >= ord(t) + dt_next(t) + dt_toShutdown(unit, t + dt_next(t))
                                    and ord(t_) < ord(t)
                                    },
907
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
908
909
910
911
912
913
914
915
916
                    * sum(t_full(t__)${ord(t__) = ord(t) - ord(t_) + 1},
                        + p_ut_shutdown(unit, t__)
                        ) // END sum(t__)
                ) // END sum(t_)
        // Units that are in the first time interval of the shutdown phase are limited by the minimum load (contained in p_ut_shutdown(unit, 't00000'))
        + sum(gnu_output(grid, node, unit)$uft_shutdownTrajectory(unit, f, t),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
            * (
917
                + v_shutdown(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
918
919
920
                    * sum(t_full(t__)${ord(t__) = 1}, p_ut_shutdown(unit, t__))
                ) // END * p_gnu(unitSizeGen)
        ]${uft_startupTrajectory(unit, f, t) or uft_shutdownTrajectory(unit, f, t)} // END run-up and shutdown phases
921
922
923
924

    * [ // Heat rate
        + p_effUnit(effGroup, unit, effGroup, 'slope')${ not ts_effUnit(effGroup, unit, effGroup, 'slope', f, t) }
        + ts_effUnit(effGroup, unit, effGroup, 'slope', f, t)
925
        ] // END * run-up phase
926

927
928
929
930
931
    =E=

    // Sum over energy outputs
    + sum(gnu_output(grid, node, unit),
        + v_gen(grid, node, unit, f, t)
932
            * [ // efficiency rate
933
                + p_effUnit(effGroup, unit, effGroup, 'slope')${ not ts_effUnit(effGroup, unit, effGroup, 'slope', f, t) }
934
                + ts_effUnit(effGroup, unit, effGroup, 'slope', f, t)
935
936
937
                ] // END * v_gen
        ) // END sum(gnu_output)

938
    // Consumption of keeping units online (no-load fuel use)
939
940
941
942
    + sum(gnu_output(grid, node, unit),
        + p_gnu(grid, node, unit, 'unitSizeGen')
        ) // END sum(gnu_output)
        * [
943
944
            + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
945
946
            ] // END * sum(gnu_output)
        * [
947
948
            + p_effGroupUnit(effGroup, unit, 'section')${not ts_effUnit(effGroup, unit, effDirect, 'section', f, t)}
            + ts_effUnit(effGroup, unit, effGroup, 'section', f, t)
949
            ] // END * sum(gnu_output)
950
;
951
952
953

* --- SOS2 Efficiency Approximation -------------------------------------------

954
955
956
q_conversionSOS2InputIntermediate(suft(effLambda(effGroup), unit, f, t)) ..

    // Sum over endogenous energy inputs
957
    - sum(gnu_input(grid, node, unit)${not p_gnu(grid, node, unit, 'doNotOutput')},
958
959
960
961
962
963
964
965
        + v_gen(grid, node, unit, f, t)
        ) // END sum(gnu_input)

    // Sum over fuel energy inputs
    + sum(uFuel(unit, 'main', fuel),
        + v_fuelUse(fuel, unit, f, t)
        ) // END sum(uFuel)

966
    =G=
967
968
969
970
971

    // Sum over the endogenous outputs of the unit
    + sum(gnu_output(grid, node, unit), p_gnu(grid, node, unit, 'unitSizeGen'))
        * [
            // Consumption of generation
972
            + sum(effGroupSelectorUnit(effGroup, unit, effSelector),
973
974
975
976
977
978
979
980
981
982
                + v_sos2(unit, f, t, effSelector)
                    * [ // Operation points convert the v_sos2 variables into share of capacity used for generation
                        + p_effUnit(effGroup, unit, effSelector, 'op')${not ts_effUnit(effGroup, unit, effSelector, 'op', f, t)}
                        + ts_effUnit(effGroup, unit, effSelector, 'op', f, t)
                        ] // END * v_sos2
                    * [ // Heat rate
                        + p_effUnit(effGroup, unit, effSelector, 'slope')${not ts_effUnit(effGroup, unit, effSelector, 'slope', f, t)}
                        + ts_effUnit(effGroup, unit, effSelector, 'slope', f, t)
                        ] // END * v_sos2
                ) // END sum(effSelector)
983
           ]
984
;
985
986
987
988
989
990

* --- SOS 2 Efficiency Approximation Online Variables -------------------------

q_conversionSOS2Constraint(suft(effLambda(effGroup), unit, f, t)) ..

    // Total value of the v_sos2 equals the number of online units
991
    + sum(effGroupSelectorUnit(effGroup, unit, effSelector),
992
993
994
995
996
997
        + v_sos2(unit, f, t, effSelector)
        ) // END sum(effSelector)

    =E=

    // Number of units online
998
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
999
;
1000