2d_constraints.gms 94.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
$ontext
This file is part of Backbone.

Backbone is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Backbone is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Backbone.  If not, see <http://www.gnu.org/licenses/>.
$offtext

18

19
* =============================================================================
20
* --- Constraint Equation Definitions -----------------------------------------
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
* =============================================================================

* --- Energy Balance ----------------------------------------------------------

q_balance(gn(grid, node), mft(m, f, t))${   not p_gn(grid, node, 'boundAll')
                                            } .. // Energy/power balance dynamics solved using implicit Euler discretization

    // The left side of the equation is the change in the state (will be zero if the node doesn't have a state)
    + p_gn(grid, node, 'energyStoredPerUnitOfState')${gn_state(grid, node)} // Unit conversion between v_state of a particular node and energy variables (defaults to 1, but can have node based values if e.g. v_state is in Kelvins and each node has a different heat storage capacity)
        * [
            + v_state(grid, node, f+df_central(f,t), t)                   // The difference between current
            - v_state(grid, node, f+df(f,t+dt(t)), t+dt(t))                     // ... and previous state of the node
            ]

    =E=

    // The right side of the equation contains all the changes converted to energy terms
    + p_stepLength(m, f, t) // Multiply with the length of the timestep to convert power into energy
        * (
            // Self discharge out of the model boundaries
41
42
            - p_gn(grid, node, 'selfDischargeLoss')${ gn_state(grid, node) }
                * v_state(grid, node, f+df_central(f,t), t) // The current state of the node
43
44

            // Energy diffusion from this node to neighbouring nodes
45
            - sum(to_node${ gnn_state(grid, node, to_node) },
46
                + p_gnn(grid, node, to_node, 'diffCoeff')
47
                    * v_state(grid, node, f+df_central(f,t), t)
48
49
50
                ) // END sum(to_node)

            // Energy diffusion from neighbouring nodes to this node
51
            + sum(from_node${ gnn_state(grid, from_node, node) },
52
                + p_gnn(grid, from_node, node, 'diffCoeff')
53
                    * v_state(grid, from_node, f+df_central(f,t), t) // Incoming diffusion based on the state of the neighbouring node
54
55
56
                ) // END sum(from_node)

            // Controlled energy transfer, applies when the current node is on the left side of the connection
57
            - sum(node_${ gn2n_directional(grid, node, node_) },
58
                + (1 - p_gnn(grid, node, node_, 'transferLoss')) // Reduce transfer losses
59
                    * v_transfer(grid, node, node_, f, t)
60
                + p_gnn(grid, node, node_, 'transferLoss') // Add transfer losses back if transfer is from this node to another node
61
                    * v_transferRightward(grid, node, node_, f, t)
62
63
64
                ) // END sum(node_)

            // Controlled energy transfer, applies when the current node is on the right side of the connection
65
66
            + sum(node_${ gn2n_directional(grid, node_, node) },
                + v_transfer(grid, node_, node, f, t)
67
                - p_gnn(grid, node_, node, 'transferLoss') // Reduce transfer losses if transfer is from another node to this node
68
                    * v_transferRightward(grid, node_, node, f, t)
69
70
71
72
73
                ) // END sum(node_)

            // Interactions between the node and its units
            + sum(gnuft(grid, node, unit, f, t),
                + v_gen(grid, node, unit, f, t) // Unit energy generation and consumption
74
                )
75
76
77
78
79
80
81
82
83
84
85

            // Spilling energy out of the endogenous grids in the model
            - v_spill(grid, node, f, t)${node_spill(node)}

            // Power inflow and outflow timeseries to/from the node
            + ts_influx_(grid, node, f, t)   // Incoming (positive) and outgoing (negative) absolute value time series

            // Dummy generation variables, for feasibility purposes
            + vq_gen('increase', grid, node, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
            - vq_gen('decrease', grid, node, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
    ) // END * p_stepLength
86
;
87
88
89

* --- Reserve Demand ----------------------------------------------------------

90
q_resDemand(restypeDirectionNode(restype, up_down, node), ft(f, t)) ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
91
                                                                        and not [ restypeReleasedForRealization(restype)
92
93
                                                                                    and ft_realized(f, t)
                                                                                    ]
Topi Rasku's avatar
Topi Rasku committed
94
                                                                        } ..
95
96
97
98
99
100
    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, up_down, node, unit)},
        + v_reserve(restype, up_down, node, unit, f+df_nReserves(node, restype, f, t), t)
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
101
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},
102
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
103
            * v_resTransferRightward(restype, up_down, node_, node, f+df_nReserves(node_, restype, f, t), t) * p_nnReserves(node_, node, restype, 'ratio')   // Reserves from another node - reduces the need for reserves in the node
104
        ) // END sum(gn2n_directional)
105
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},
106
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
107
            * v_resTransferLeftward(restype, up_down, node, node_, f+df_nReserves(node_, restype, f, t), t) * p_nnReserves(node, node_, restype, 'ratio')    // Reserves from another node - reduces the need for reserves in the node
108
109
110
111
112
113
114
115
116
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves
    + ts_reserveDemand_(restype, up_down, node, f, t)${p_nReserves(node, restype, 'use_time_series')}
    + p_nReserves(node, restype, up_down)${not p_nReserves(node, restype, 'use_time_series')}

    // Reserve provisions to another nodes via transfer links
117
118
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},   // If trasferring reserves to another node, increase your own reserves by same amount
        + v_resTransferRightward(restype, up_down, node, node_, f+df_nReserves(node, restype, f, t), t) * p_nnReserves(node, node_, restype, 'ratio')
119
        ) // END sum(gn2n_directional)
120
121
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},   // If trasferring reserves to another node, increase your own reserves by same amount
        + v_resTransferLeftward(restype, up_down, node_, node, f+df_nReserves(node, restype, f, t), t) * p_nnReserves(node_, node, restype, 'ratio')
122
123
124
125
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
    - vq_resDemand(restype, up_down, node, f, t)
126
    - vq_resMissing(restype, up_down, node, f, t)$(ord(t) <= tSolveFirst + p_nReserves(node, restype, 'gate_closure') - mod(tSolveFirst - 1, p_nReserves(node, restype, 'update_frequency')))
127
;
128
129
130

* --- Maximum Downward Capacity -----------------------------------------------

131
q_maxDownward(m, gnuft(grid, node, unit, f, t))${   [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
                                                        and sum(restype, nuRescapable(restype, 'down', node, unit)) // downward reserves
                                                        ]
                                                    // NOTE!!! Could be better to form a gnuft_reserves subset?
                                                    or [ // the unit has an online variable
                                                        uft_online(unit, f, t)
                                                        and [
                                                            (unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeGen')) // generators with a min. load
                                                            or p_gnu(grid, node, unit, 'maxCons') // or consuming units with an online variable
                                                            ]
                                                        ] // END or
                                                    or [ // consuming units with investment possibility
                                                        gnu_input(grid, node, unit)
                                                        and [unit_investLP(unit) or unit_investMIP(unit)]
                                                        ]
                                                    } ..
    // Energy generation/consumption
    + v_gen(grid, node, unit, f, t)

    // Considering output constraints (e.g. cV line)
151
152
153
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
            * v_gen(grid_output, node_, unit, f, t)
154
155
156
        ) // END sum(gngnu_constrainedOutputRatio)

    // Downward reserve participation
157
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
158
159
160
161
162
163
164
        + v_reserve(restype, 'down', node, unit, f+df_nReserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
        ) // END sum(nuRescapable)

    =G= // Must be greater than minimum load or maximum consumption  (units with min-load and both generation and consumption are not allowed)

    // Generation units, greater than minload
    + p_gnu(grid, node, unit, 'unitSizeGen')
165
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
166
167
168
169
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [ // Online variables should only be generated for units with restrictions
170
171
            + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f+df_central(f,t), t)} // LP online variant
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f+df_central(f,t), t)} // MIP online variant
172
173
            ] // END v_online

Niina Helistö's avatar
Niina Helistö committed
174
175
176
177
178
179
    + [
        // Units that are in the run-up phase need to keep up with the run-up ramp rate (contained in p_ut_runUp)
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * sum(t_activeNoReset(t_)${ ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                        and ord(t_) <= ord(t)},
                + sum(unitStarttype(unit, starttype),
180
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
181
182
183
184
185
186
187
188
189
190
                        * sum(t_full(t__)${ord(t__) = p_u_runUpTimeIntervalsCeil(unit) - ord(t) - dt_next(t) + 1 + ord(t_)}, // last step in the interval
                            + p_ut_runUp(unit, t__)
*                                * 1 // test values [0,1] to provide some flexibility
                            ) // END sum(t__)
                    ) // END sum(unitStarttype)
                ) // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by the minimum load (contained in p_ut_runUp(unit, 't00000'))
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * sum(t_activeNoReset(t_)${ ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))},
                + sum(unitStarttype(unit, starttype),
191
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
192
193
194
195
196
197
198
199
200
201
                        * sum(t_full(t__)${ord(t__) = 1}, p_ut_runUp(unit, t__))
                    ) // END sum(unitStarttype)
                ) // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}

    + [
        // Units that are in the shutdown phase need to keep up with the shutdown ramp rate (contained in p_ut_shutdown)
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * sum(t_activeNoReset(t_)${ ord(t_) >= ord(t) + dt_next(t) + dt_toShutdown(unit, t + dt_next(t))
                                        and ord(t_) < ord(t)},
202
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
203
204
                    * sum(t_full(t__)${ord(t__) = ord(t) - ord(t_) + 1},
                        + p_ut_shutdown(unit, t__)
205
                        ) // END sum(t__)
Niina Helistö's avatar
Niina Helistö committed
206
207
208
209
                ) // END sum(t_)
        // Units that are in the first time interval of the shutdown phase are limited by the minimum load (contained in p_ut_shutdown(unit, 't00000'))
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * (
210
                + v_shutdown(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
211
212
213
                    * sum(t_full(t__)${ord(t__) = 1}, p_ut_shutdown(unit, t__))
                ) // END * p_gnu(unitSizeGen)
        ]${uft_shutdownTrajectory(unit, f, t)}
214

215
216
217
218
219
    // Consuming units, greater than maxCons
    // Available capacity restrictions
    - p_unit(unit, 'availability')
        * [
            // Capacity factors for flow units
220
            + sum(flowUnit(flow, unit),
221
222
223
224
225
226
227
228
229
                + ts_cf_(flow, node, f, t)
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxCons')${not uft_online(unit, f, t)} // Use initial maximum if no online variables
            + p_gnu(grid, node, unit, 'unitSizeCons')
                * [
230
                    // Capacity online
231
232
                    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
                    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
233
234
235
236
237
238
239
240

                    // Investments to additional non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f, t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)} // NOTE! v_invest_LP also for consuming units is positive
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)} // NOTE! v_invest_MIP also for consuming units is positive
                        ) // END sum(t_invest)
241
242
                    ] // END * p_gnu(unitSizeCons)
            ] // END * p_unit(availability)
243
;
244
245
246

* --- Maximum Upwards Capacity ------------------------------------------------

247
q_maxUpward(m, gnuft(grid, node, unit, f, t))${ [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
                                                    and sum(restype, nuRescapable(restype, 'up', node, unit)) // upward reserves
                                                    ]
                                                or [
                                                    uft_online(unit, f, t) // or the unit has an online variable
                                                        and [
                                                            [unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeCons')] // consuming units with min_load
                                                            or [p_gnu(grid, node, unit, 'maxGen')]                          // generators with an online variable
                                                            ]
                                                    ]
                                                or [
                                                    gnu_output(grid, node, unit) // generators with investment possibility
                                                    and (unit_investLP(unit) or unit_investMIP(unit))
                                                    ]
                                                }..
    // Energy generation/consumption
    + v_gen(grid, node, unit, f, t)

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
            * v_gen(grid_output, node_, unit, f, t)
        ) // END sum(gngnu_constrainedOutputRatio)

    // Upwards reserve participation
272
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
273
274
275
276
277
278
279
        + v_reserve(restype, 'up', node, unit, f+df_nReserves(node, restype, f, t), t)
        ) // END sum(nuRescapable)

    =L= // must be less than available/online capacity

    // Consuming units
    + p_gnu(grid, node, unit, 'unitSizeCons')
280
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
281
282
283
284
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [
285
286
            + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
287
288
289
290
291
292
293
            ] // END * p_gnu(unitSizeCons)

    // Generation units
    // Available capacity restrictions
    + p_unit(unit, 'availability') // Generation units are restricted by their (available) capacity
        * [
            // Capacity factor for flow units
294
            + sum(flowUnit(flow, unit),
295
296
297
298
299
300
301
302
303
                + ts_cf_(flow, node, f, t)
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxGen')${not uft_online(unit, f, t)} // Use initial maxGen if no online variables
            + p_gnu(grid, node, unit, 'unitSizeGen')
                * [
304
                    // Capacity online
305
306
                    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f ,t)}
                    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
307
308
309
310
311
312
313
314

                    // Investments to non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f ,t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)}
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                        ) // END sum(t_invest)
315
316
                    ] // END * p_gnu(unitSizeGen)
            ] // END * p_unit(availability)
317

Niina Helistö's avatar
Niina Helistö committed
318
319
320
321
322
323
    + [
        // Units that are in the run-up phase need to keep up with the run-up ramp rate (contained in p_ut_runUp)
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * sum(t_activeNoReset(t_)${ ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                        and ord(t_) <= ord(t)},
                + sum(unitStarttype(unit, starttype),
324
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
325
326
327
328
329
330
331
332
333
                        * sum(t_full(t__)${ord(t__) = p_u_runUpTimeIntervalsCeil(unit) - ord(t) - dt_next(t) + 1 + ord(t_)}, // last step in the interval
                            + p_ut_runUp(unit, t__)
                            ) // END sum(t__)
                    ) // END sum(unitStarttype)
                ) // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by the p_u_maxOutputInLastRunUpInterval
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * sum(t_activeNoReset(t_)${ ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))},
                + sum(unitStarttype(unit, starttype),
334
                    + v_startup(unit, starttype, f+df(f,t_), t_)
335
                        * p_u_maxOutputInLastRunUpInterval(unit)
Niina Helistö's avatar
Niina Helistö committed
336
337
338
339
340
341
342
343
344
                    ) // END sum(unitStarttype)
                ) // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}

    + [
        // Units that are in the shutdown phase need to keep up with the shutdown ramp rate (contained in p_ut_shutdown)
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * sum(t_activeNoReset(t_)${ ord(t_) >= ord(t) + dt_next(t) + dt_toShutdown(unit, t + dt_next(t))
                                        and ord(t_) < ord(t)},
345
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
346
347
348
349
350
351
352
                    * sum(t_full(t__)${ord(t__) = ord(t) - ord(t_) + 1},
                        + p_ut_shutdown(unit, t__)
                        ) // END sum(t__)
                ) // END sum(t_)
        // Units that are in the first time interval of the shutdown phase are limited by p_u_maxOutputInFirstShutdownInterval
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * (
353
                + v_shutdown(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
354
355
356
                    * p_u_maxOutputInFirstShutdownInterval(unit)
                ) // END * p_gnu(unitSizeGen)
        ]${uft_shutdownTrajectory(unit, f, t)}
357
;
358
359
360

* --- Unit Startup and Shutdown -----------------------------------------------

361
q_startshut(m, uft_online(unit, f, t)) ..
362
363
364
    // Units currently online
    + v_online_LP (unit, f+df_central(f,t), t)${uft_onlineLP (unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
365
366

    // Units previously online
367
368

    // The same units
369
    - v_online_LP (unit, f+df(f,t+dt(t)), t+dt(t))${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
370
                                                             and not uft_aggregator_first(unit, f, t) } // This reaches to tFirstSolve when dt = -1
371
    - v_online_MIP(unit, f+df(f,t+dt(t)), t+dt(t))${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
372
373
374
375
                                                             and not uft_aggregator_first(unit, f, t) }

    // Aggregated units just before they are turned into aggregator units
    - sum(unit_${unitAggregator_unit(unit, unit_)},
376
377
        + v_online_LP (unit_, f+df(f,t+dt(t)), t+dt(t))${uft_onlineLP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
        + v_online_MIP(unit_, f+df(f,t+dt(t)), t+dt(t))${uft_onlineMIP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
378
        )${uft_aggregator_first(unit, f, t)} // END sum(unit_)
379

380
381
    =E=

382
    // Unit startup and shutdown
383

384
    // Add startup of units dt_toStartup before the current t (no start-ups for aggregator units before they become active)
385
    + sum(unitStarttype(unit, starttype),
386
        + v_startup(unit, starttype, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
387
        )${not [unit_aggregator(unit) and ord(t) + dt_toStartup(unit, t) <= tSolveFirst + p_unit(unit, 'lastStepNotAggregated')]} // END sum(starttype)
388

389
390
391
392
    // NOTE! According to 3d_setVariableLimits,
    // cannot start a unit if the time when the unit would become online is outside
    // the horizon when the unit has an online variable
    // --> no need to add start-ups of aggregated units to aggregator units
393

394
    // Shutdown of units at time t
395
    - v_shutdown(unit, f, t)
396
;
397

398
*--- Startup Type -------------------------------------------------------------
399
// !!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
400
401
402
// This formulation doesn't work as intended when unitCount > 1, as one recent
// shutdown allows for multiple hot/warm startups on subsequent time steps.
// Pending changes.
403

404
q_startuptype(m, starttypeConstrained(starttype), uft_online(unit, f, t))${ unitStarttype(unit, starttype) } ..
405
406

    // Startup type
407
    + v_startup(unit, starttype, f, t)
408
409
410
411

    =L=

    // Subunit shutdowns within special startup timeframe
412
    + sum(counter${dt_starttypeUnitCounter(starttype, unit, counter)},
413
414
415
416
417
        + v_shutdown(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))${ (t_activeNoReset(t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
                                                                                                                                                            and not t_active(t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
                                                                                                                                                            )
                                                                                                                                                        or uft_online(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
                                                                                                                                                        }
418
419
420
        ) // END sum(counter)

    // NOTE: for aggregator units, shutdowns for aggregated units are not considered
421
;
422

423

424
425
*--- Online Limits with Startup Type Constraints and Investments --------------

426
q_onlineLimit(m, uft_online(unit, f, t))${  p_unit(unit, 'minShutdownHours')
427
                                            or p_u_runUpTimeIntervals(unit)
428
429
430
431
                                            or unit_investLP(unit)
                                            or unit_investMIP(unit)
                                            } ..
    // Online variables
432
433
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f ,t)}
434
435
436
437
438
439

    =L=

    // Number of existing units
    + p_unit(unit, 'unitCount')

440
    // Number of units unable to become online due to restrictions
441
    - sum(counter${dt_downtimeUnitCounter(unit, counter)},
442
443
444
445
446
        + v_shutdown(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))${  (t_activeNoReset(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                                                                                                                        and not t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                                                                                                                        )
                                                                                                                                    or uft_online(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                                                                                                                    }
447
448
449
450
451
        ) // END sum(counter)

    // Number of units unable to become online due to restrictions (aggregated units in the past horizon or if they have an online variable)
    - sum(unit_${unitAggregator_unit(unit, unit_)},
        + sum(counter${dt_downtimeUnitCounter(unit, counter)},
452
453
454
455
456
            + v_shutdown(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))${ (t_activeNoReset(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                                                                                                                            and not t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                                                                                                                            )
                                                                                                                                        or uft_online(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                                                                                                                        }
457
458
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
459
460
461

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
462
463
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
464
465
466
        ) // END sum(t_invest)
;

467
468
469
470
*--- Both q_offlineAfterShutdown and q_onlineOnStartup work when there is only one unit.
*    These equations prohibit single units turning on and off at the same time step.
*    Unfortunately there seems to be no way to prohibit this when unit count is > 1.
*    (it shouldn't be worthwhile anyway if there is a startup cost, but it can fall within the solution gap).
471
472
473
474
475
476
477
478
479
q_onlineOnStartUp(uft_online(unit, f, t))${sum(starttype, unitStarttype(unit, starttype))}..

    // Units currently online
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}

    =G=

    + sum(unitStarttype(unit, starttype),
480
        + v_startup(unit, starttype, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))  //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
481
482
483
484
485
      ) // END sum(starttype)
;

q_offlineAfterShutdown(uft_online(unit, f, t))${sum(starttype, unitStarttype(unit, starttype))}..

486
487
488
489
490
    // Number of existing units
    + p_unit(unit, 'unitCount')

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
491
492
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
493
494
        ) // END sum(t_invest)

495
496
497
498
499
500
    // Units currently online
    - v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    - v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}

    =G=

501
    + v_shutdown(unit, f, t)
502
503
;

504
505
*--- Minimum Unit Uptime ------------------------------------------------------

506
q_onlineMinUptime(m, uft_online(unit, f, t))${  p_unit(unit, 'minOperationHours')
507
508
509
                                                } ..

    // Units currently online
510
511
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
512
513
514
515

    =G=

    // Units that have minimum operation time requirements active
516
    + sum(counter${dt_uptimeUnitCounter(unit, counter)},
517
        + sum(unitStarttype(unit, starttype),
518
519
520
521
522
            + v_startup(unit, starttype, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))${    (t_activeNoReset(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
                                                                                                                                                                                                and not t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
                                                                                                                                                                                                )
                                                                                                                                                                                            or uft_online(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
                                                                                                                                                                                            }
523
            ) // END sum(starttype)
524
525
526
527
528
529
        ) // END sum(counter)

    // Units that have minimum operation time requirements active (aggregated units in the past horizon or if they have an online variable)
    + sum(unit_${unitAggregator_unit(unit, unit_)},
        + sum(counter${dt_uptimeUnitCounter(unit, counter)},
            + sum(unitStarttype(unit, starttype),
530
531
532
533
534
                + v_startup(unit, starttype, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))${    (t_activeNoReset(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
                                                                                                                                                                                                    and not t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
                                                                                                                                                                                                    )
                                                                                                                                                                                                or uft_online(unit_, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
                                                                                                                                                                                                }
535
536
537
                ) // END sum(starttype)
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
538
539
;

540
* --- Ramp Constraints --------------------------------------------------------
541
542
543
544

q_genRamp(m, s, gnuft_ramp(grid, node, unit, f, t))${  ord(t) > msStart(m, s) + 1
                                                       and msft(m, s, f, t)
                                                       } ..
545

546
    + v_genRamp(grid, node, unit, f, t) * p_stepLength(m, f, t)
547

548
    =E=
549

550
    // Change in generation over the interval: v_gen(t) - v_gen(t-1)
551
    + v_gen(grid, node, unit, f, t)
552

553
554
555
556
    // Unit generation at t-1 (except aggregator units right before the aggregation threshold, see next term)
    - v_gen(grid, node, unit, f+df(f,t+dt(t)), t+dt(t))${not uft_aggregator_first(unit, f, t)}
    // Unit generation at t-1, aggregator units right before the aggregation threshold
    + sum(unit_${unitAggregator_unit(unit, unit_)},
557
        - v_gen(grid, node, unit_, f+df(f,t+dt(t)), t+dt(t))
558
      )${uft_aggregator_first(unit, f, t)}
559
;
560

561
* --- Ramp Up Limits ----------------------------------------------------------
562
563
564
565
566

q_rampUpLimit(m, s, gnuft_ramp(grid, node, unit, f, t))${  ord(t) > msStart(m, s) + 1
                                                           and msft(m, s, f, t)
                                                           and p_gnu(grid, node, unit, 'maxRampUp')
                                                           } ..
567
    + v_genRamp(grid, node, unit, f, t)
568
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
569
570
571
572
573
574
        + v_reserve(restype, 'up', node, unit, f+df_nReserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
        ) // END sum(nuRescapable)
        / p_stepLength(m, f, t)

    =L=

575
    // Ramping capability of units without an online variable
576
577
578
579
580
581
582
583
584
585
586
587
    + (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
            + v_invest_LP(unit, t_)${not uft_onlineLP(unit, f, t) and unit_investLP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
            + v_invest_MIP(unit, t_)${not uft_onlineMIP(unit, f, t) and unit_investMIP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

588
    // Ramping capability of units with an online variable
589
590
591
592
593
594
595
596
    + (
        + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

Niina Helistö's avatar
Niina Helistö committed
597
598
599
600
601
602
    + [
        // Units that are in the run-up phase need to keep up with the run-up ramp rate
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * sum(t_activeNoReset(t_)${   ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                          and ord(t_) <= ord(t)},
                + sum(unitStarttype(unit, starttype),
603
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
604
605
606
607
608
609
610
611
612
                        * p_unit(unit, 'rampSpeedToMinLoad')
                        * 60   // Unit conversion from [p.u./min] to [p.u./h]
                  ) // END sum(unitStarttype)
              ) // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by rampSpeedToMinLoad and maxRampUp
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * sum(t_activeNoReset(t_)${   ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                          and uft_startupTrajectory(unit, f, t)},
                + sum(unitStarttype(unit, starttype),
613
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
614
615
616
617
618
                        * max(p_unit(unit, 'rampSpeedToMinLoad'), p_gnu(grid, node, unit, 'maxRampUp')) // could also be weighted average from 'maxRampUp' and 'rampSpeedToMinLoad'
                        * 60   // Unit conversion from [p.u./min] to [p.u./h]
                  ) // END sum(unitStarttype)
              ) // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}
619

620
    // Shutdown of consumption units from full load
621
    + v_shutdown(unit, f, t)${uft_online(unit, f, t) and gnu_input(grid, node, unit)}
622
        * p_gnu(grid, node, unit, 'unitSizeTot')
623
;
624

625
* --- Ramp Down Limits --------------------------------------------------------
626
627
628
629
630

q_rampDownLimit(m, s, gnuft_ramp(grid, node, unit, f, t))${  ord(t) > msStart(m, s) + 1
                                                             and msft(m, s, f, t)
                                                             and p_gnu(grid, node, unit, 'maxRampDown')
                                                             } ..
631
    + v_genRamp(grid, node, unit, f, t)
632
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
633
634
635
636
637
638
        + v_reserve(restype, 'down', node, unit, f+df_nReserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
        ) // END sum(nuRescapable)
        / p_stepLength(m, f, t)

    =G=

639
    // Ramping capability of units without online variable
640
641
642
643
644
645
646
647
648
649
650
651
    - (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
            + v_invest_LP(unit, t_)${not uft_onlineLP(unit, f, t) and unit_investLP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
            + v_invest_MIP(unit, t_)${not uft_onlineMIP(unit, f, t) and unit_investMIP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnu(grid, node, unit, 'maxRampDown')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

652
    // Ramping capability of units that are online
653
654
655
656
657
658
659
660
    - (
        + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnu(grid, node, unit, 'maxRampDown')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

661
    // Shutdown of generation units from full load
662
    - v_shutdown(unit, f, t)${   uft_online(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
663
664
                                                 and gnu_output(grid, node, unit)
                                                 and not uft_shutdownTrajectory(unit, f, t)}
665
        * p_gnu(grid, node, unit, 'unitSizeTot')
666

Niina Helistö's avatar
Niina Helistö committed
667
668
669
670
671
    + [
        // Units that are in the shutdown phase need to keep up with the shutdown ramp rate
        - p_gnu(grid, node, unit, 'unitSizeGen')
            * sum(t_activeNoReset(t_)${   ord(t_) >= ord(t) + dt_toShutdown(unit, t)
                                          and ord(t_) < ord(t) + dt(t)},
672
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
673
674
675
                    * p_unit(unit, 'rampSpeedFromMinLoad')
                    * 60   // Unit conversion from [p.u./min] to [p.u./h]
              ) // END sum(t_)
676

Niina Helistö's avatar
Niina Helistö committed
677
678
679
        // Units that are in the first time interval of the shutdown phase are limited rampSpeedFromMinLoad and maxRampDown
        - p_gnu(grid, node, unit, 'unitSizeGen')
            * (
680
                + v_shutdown(unit, f+df(f,t+dt(t)), t+dt(t))
Niina Helistö's avatar
Niina Helistö committed
681
682
683
684
685
686
687
                    * max(p_unit(unit, 'rampSpeedFromMinLoad'), p_gnu(grid, node, unit, 'maxRampDown')) // could also be weighted average from 'maxRampDown' and 'rampSpeedFromMinLoad'
                    * 60   // Unit conversion from [p.u./min] to [p.u./h]
                ) // END * p_gnu(unitSizeGen)

        // Units just starting the shutdown phase are limited by the maxRampDown
        - p_gnu(grid, node, unit, 'unitSizeGen')
            * (
688
                + v_shutdown(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
689
690
691
692
                    * p_gnu(grid, node, unit, 'maxRampDown')
                    * 60   // Unit conversion from [p.u./min] to [p.u./h]
                ) // END * p_gnu(unitSizeGen)
        ]${uft_shutdownTrajectory(unit, f, t)}
693
694
;

695
696
697
698
699
700
701
* --- Ramps separated into upward and downward ramps --------------------------

q_rampUpDown(m, s, gnuft_ramp(grid, node, unit, f, t))${  ord(t) > msStart(m, s) + 1
                                                          and msft(m, s, f, t)
                                                          and sum(slack, gnuft_rampCost(grid, node, unit, slack, f, t))
                                                          } ..

702
    + v_genRamp(grid, node, unit, f, t)
703

704
    =E=
705

706
707
708
709
710
    // Upward and downward ramp categories
    + sum(slack${ gnuft_rampCost(grid, node, unit, slack, f, t) },
        + v_genRampUpDown(grid, node, unit, slack, f, t)$upwardSlack(slack)
        - v_genRampUpDown(grid, node, unit, slack, f, t)$downwardSlack(slack)
      ) // END sum(slack)
711
712
;

Niina Helistö's avatar
Niina Helistö committed
713
* --- Upward and downward ramps constrained by slack boundaries ---------------
714
715
716
717
718

q_rampSlack(m, s, gnuft_rampCost(grid, node, unit, slack, f, t))${  ord(t) > msStart(m, s) + 1
                                                                    and msft(m, s, f, t)
                                                                    } ..

719
    + v_genRampUpDown(grid, node, unit, slack, f, t)
720

721
    =L=
722
723

    // Ramping capability of units without an online variable
724
725
726
727
728
729
730
731
732
733
734
    + (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
            + v_invest_LP(unit, t_)${not uft_onlineLP(unit, f, t) and unit_investLP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
            + v_invest_MIP(unit, t_)${not uft_onlineMIP(unit, f, t) and unit_investMIP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
735
736

    // Ramping capability of units with an online variable
737
738
739
740
741
742
743
    + (
        + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
744

Niina Helistö's avatar
Niina Helistö committed
745
746
747
748
749
750
    + [
        // Ramping of units that are in the run-up phase
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * sum(t_activeNoReset(t_)${   ord(t_) >= ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                          and ord(t_) <= ord(t)},
                + sum(unitStarttype(unit, starttype),
751
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
752
753
754
755
756
                        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
                        * 60   // Unit conversion from [p.u./min] to [p.u./h]
                  ) // END sum(unitStarttype)
              ) // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}
757
758

    // Shutdown of consumption units from full load
759
    + v_shutdown(unit, f, t)${uft_online(unit, f, t) and gnu_input(grid, node, unit)}
760
761
762
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
763

764
    // Shutdown of generation units from full load and ramping of units in the beginning of the shutdown phase
765
    + v_shutdown(unit, f, t)${uft_online(unit, f, t) and gnu_output(grid, node, unit)}
766
767
768
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
769

Niina Helistö's avatar
Niina Helistö committed
770
771
772
773
774
    + [
        // Ramping of units that are in the shutdown phase
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * sum(t_activeNoReset(t_)${   ord(t_) >= ord(t) + dt_toShutdown(unit, t)
                                          and ord(t_) <= ord(t) + dt(t)},
775
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
776
777
778
779
                    * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
                    * 60   // Unit conversion from [p.u./min] to [p.u./h]
              ) // END sum(t_)
        ]${uft_shutdownTrajectory(unit, f, t)}
780
;
781

782
783
784
785
786
787
788
* --- Fixed Output Ratio ------------------------------------------------------

q_outputRatioFixed(gngnu_fixedOutputRatio(grid, node, grid_, node_, unit), ft(f, t))${  uft(unit, f, t)
                                                                                        } ..

    // Generation in grid
    + v_gen(grid, node, unit, f, t)
789
        / p_gnu(grid, node, unit, 'conversionFactor')
790
791
792
793
794

    =E=

    // Generation in grid_
    + v_gen(grid_, node_, unit, f, t)
795
        / p_gnu(grid_, node_, unit, 'conversionFactor')
796
;
797
798
799
800
801
802
803
804

* --- Constrained Output Ratio ------------------------------------------------

q_outputRatioConstrained(gngnu_constrainedOutputRatio(grid, node, grid_, node_, unit), ft(f, t))${  uft(unit, f, t)
                                                                                                    } ..

    // Generation in grid
    + v_gen(grid, node, unit, f, t)
805
        / p_gnu(grid, node, unit, 'conversionFactor')
806
807
808
809
810

    =G=

    // Generation in grid_
    + v_gen(grid_, node_, unit, f, t)
811
        / p_gnu(grid_, node_, unit, 'conversionFactor')
Juha Kiviluoma's avatar
Juha Kiviluoma committed
812
;
813
814
815

* --- Direct Input-Output Conversion ------------------------------------------

816
q_conversionDirectInputOutput(suft(effDirect(effGroup), unit, f, t)) ..
817
818

    // Sum over endogenous energy inputs
819
    - sum(gnu_input(grid, node, unit)${not p_gnu(grid, node, unit, 'doNotOutput')},
820
821
822
823
824
825
826
827
        + v_gen(grid, node, unit, f, t)
        ) // END sum(gnu_input)

    // Sum over fuel energy inputs
    + sum(uFuel(unit, 'main', fuel),
        + v_fuelUse(fuel, unit, f, t)
        ) // END sum(uFuel)

828
829
    // Main fuel is not used during run-up and shutdown phases
    + [
Niina Helistö's avatar
Niina Helistö committed
830
831
832
833
834
835
836
837
        // Units that are in the run-up phase need to keep up with the run-up ramp rate (contained in p_ut_runUp)
        + sum(gnu_output(grid, node, unit)$uft_startupTrajectory(unit, f, t),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
            * sum(t_activeNoReset(t_)${ ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                        and ord(t_) <= ord(t)
                                        },
                + sum(unitStarttype(unit, starttype),
838
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
839
840
841
842
843
844
845
846
847
848
849
850
                        * sum(t_full(t__)${ ord(t__) = p_u_runUpTimeIntervalsCeil(unit) - ord(t) - dt_next(t) + 1 + ord(t_) }, // last step in the interval
                            + p_ut_runUp(unit, t__)
                          ) // END sum(t__)
                  ) // END sum(unitStarttype)
              )  // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by the minimum load (contained in p_ut_runUp(unit, 't00000'))
        + sum(gnu_output(grid, node, unit)$uft_startupTrajectory(unit, f, t),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
            * sum(t_activeNoReset(t_)${ ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                        },
                + sum(unitStarttype(unit, starttype),
851
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
852
853
854
855
856
857
858
859
860
861
862
                        * sum(t_full(t__)${ord(t__) = 1}, p_ut_runUp(unit, t__))
                  ) // END sum(unitStarttype)
              )  // END sum(t_)

        // Units that are in the shutdown phase need to keep up with the shutdown ramp rate (contained in p_ut_shutdown)
        + sum(gnu_output(grid, node, unit)$uft_shutdownTrajectory(unit, f, t),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
            * sum(t_activeNoReset(t_)${ ord(t_) >= ord(t) + dt_next(t) + dt_toShutdown(unit, t + dt_next(t))
                                        and ord(t_) < ord(t)
                                        },
863
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
864
865
866
867
868
869
870
871
872
                    * sum(t_full(t__)${ord(t__) = ord(t) - ord(t_) + 1},
                        + p_ut_shutdown(unit, t__)
                        ) // END sum(t__)
                ) // END sum(t_)
        // Units that are in the first time interval of the shutdown phase are limited by the minimum load (contained in p_ut_shutdown(unit, 't00000'))
        + sum(gnu_output(grid, node, unit)$uft_shutdownTrajectory(unit, f, t),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
            * (
873
                + v_shutdown(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
874
875
876
                    * sum(t_full(t__)${ord(t__) = 1}, p_ut_shutdown(unit, t__))
                ) // END * p_gnu(unitSizeGen)
        ]${uft_startupTrajectory(unit, f, t) or uft_shutdownTrajectory(unit, f, t)} // END run-up and shutdown phases
877
878
879
880
881

    * [ // Heat rate
        + p_effUnit(effGroup, unit, effGroup, 'slope')${ not ts_effUnit(effGroup, unit, effGroup, 'slope', f, t) }
        + ts_effUnit(effGroup, unit, effGroup, 'slope', f, t)
        ] // END * v_gen
882

883
884
885
886
887
    =E=

    // Sum over energy outputs
    + sum(gnu_output(grid, node, unit),
        + v_gen(grid, node, unit, f, t)
888
            * [ // efficiency rate
889
                + p_effUnit(effGroup, unit, effGroup, 'slope')${ not ts_effUnit(effGroup, unit, effGroup, 'slope', f, t) }
890
                + ts_effUnit(effGroup, unit, effGroup, 'slope', f, t)
891
892
893
                ] // END * v_gen
        ) // END sum(gnu_output)

894
    // Consumption of keeping units online (no-load fuel use)
895
896
897
898
    + sum(gnu_output(grid, node, unit),
        + p_gnu(grid, node, unit, 'unitSizeGen')
        ) // END sum(gnu_output)
        * [
899
900
            + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
901
902
            ] // END * sum(gnu_output)
        * [
903
904
            + p_effGroupUnit(effGroup, unit, 'section')${not ts_effUnit(effGroup, unit, effDirect, 'section', f, t)}
            + ts_effUnit(effGroup, unit, effGroup, 'section', f, t)
905
            ] // END * sum(gnu_output)
906
;
907
908
909

* --- SOS2 Efficiency Approximation -------------------------------------------

910
911
912
q_conversionSOS2InputIntermediate(suft(effLambda(effGroup), unit, f, t)) ..

    // Sum over endogenous energy inputs
913
    - sum(gnu_input(grid, node, unit)${not p_gnu(grid, node, unit, 'doNotOutput')},
914
915
916
917
918
919
920
921
        + v_gen(grid, node, unit, f, t)
        ) // END sum(gnu_input)

    // Sum over fuel energy inputs
    + sum(uFuel(unit, 'main', fuel),
        + v_fuelUse(fuel, unit, f, t)
        ) // END sum(uFuel)

922
    =G=
923
924
925
926
927

    // Sum over the endogenous outputs of the unit
    + sum(gnu_output(grid, node, unit), p_gnu(grid, node, unit, 'unitSizeGen'))
        * [
            // Consumption of generation
928
            + sum(effGroupSelectorUnit(effGroup, unit, effSelector),
929
930
931
932
933
934
935
936
937
938
                + v_sos2(unit, f, t, effSelector)
                    * [ // Operation points convert the v_sos2 variables into share of capacity used for generation
                        + p_effUnit(effGroup, unit, effSelector, 'op')${not ts_effUnit(effGroup, unit, effSelector, 'op', f, t)}
                        + ts_effUnit(effGroup, unit, effSelector, 'op', f, t)
                        ] // END * v_sos2
                    * [ // Heat rate
                        + p_effUnit(effGroup, unit, effSelector, 'slope')${not ts_effUnit(effGroup, unit, effSelector, 'slope', f, t)}
                        + ts_effUnit(effGroup, unit, effSelector, 'slope', f, t)
                        ] // END * v_sos2
                ) // END sum(effSelector)
939
           ]
940
;
941
942
943
944
945
946

* --- SOS 2 Efficiency Approximation Online Variables -------------------------

q_conversionSOS2Constraint(suft(effLambda(effGroup), unit, f, t)) ..

    // Total value of the v_sos2 equals the number of online units
947
    + sum(effGroupSelectorUnit(effGroup, unit, effSelector),
948
949
950
951
952
953
        + v_sos2(unit, f, t, effSelector)
        ) // END sum(effSelector)

    =E=

    // Number of units online
954
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
955
;
956
957
958
959
960
961
962
963

* --- SOS 2 Efficiency Approximation Output Generation ------------------------

q_conversionSOS2IntermediateOutput(suft(effLambda(effGroup), unit, f, t)) ..

    // Endogenous energy output
    + sum(gnu_output(grid, node, unit),
        + p_gnu(grid, node, unit, 'unitSizeGen')
964
      ) // END sum(gnu_output)
965
        * sum(effGroupSelectorUnit(effGroup, unit, effSelector),
966
967
968
969
            + v_sos2(unit, f, t, effSelector)
            * [ // Operation points convert v_sos2 into share of capacity used for generation
                + p_effUnit(effGroup, unit, effSelector, 'op')${not ts_effUnit(effGroup, unit, effSelector, 'op', f, t)}
                + ts_effUnit(effGroup, unit, effSelector, 'op', f, t)
970
971
              ] // END * v_sos2
          ) // END sum(effSelector)
972

Niina Helistö's avatar
Niina Helistö committed
973
974
975
976
977
978
979
980
981
    + [
        // Units that are in the run-up phase need to keep up with the run-up ramp rate (contained in p_ut_runUp)
        + sum(gnu_output(grid, node, unit),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
            * sum(t_activeNoReset(t_)${ ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                        and ord(t_) <= ord(t)
                                        },
                + sum(unitStarttype(unit, starttype),
982
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
983
984
985
986
987
988
989
990
991
992
993
994
                        * sum(t_full(t__)${ ord(t__) = p_u_runUpTimeIntervalsCeil(unit) - ord(t) - dt_next(t) + 1 + ord(t_) }, // last step in the interval
                            + p_ut_runUp(unit, t__)
                          ) // END sum(t__)
                  ) // END sum(unitStarttype)
              )  // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by the minimum load (contained in p_ut_runUp(unit, 't00000'))
        + sum(gnu_output(grid, node, unit),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
            * sum(t_activeNoReset(t_)${ ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                        },
                + sum(unitStarttype(unit, starttype),
995
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
996
997
998
999
1000
                        * sum(t_full(t__)${ord(t__) = 1}, p_ut_runUp(unit, t__))
                  ) // END sum(unitStarttype)
              )  // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}