3c_inputsLoop.gms 19.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
$ontext
This file is part of Backbone.

Backbone is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Backbone is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Backbone.  If not, see <http://www.gnu.org/licenses/>.
$offtext
17

18
* =============================================================================
19
* --- Update the Forecast Data ------------------------------------------------
20
* =============================================================================
21

22
put log 'ord tSolve: ';
23
put log ord(tSolve):0:0 /;
24
putclose log;
25

26
if (ord(tSolve) >= tForecastNext(mSolve),
27

28
29
30
31
32
33
    // Determine the necessary horizon for updating data
    option clear = tmp;
    tmp = max(  mSettings(mSolve, 't_forecastLengthUnchanging') + mSettings(mSolve, 't_forecastJump'),
                mSettings('schedule', 't_forecastLengthDecreasesFrom')
                );

34
    // Find time steps until the forecast horizon
35
    option clear = tt_forecast;
36
    tt_forecast(t_current(t))
37
        ${ ord(t) <= tSolveFirst + tmp }
38
39
        = yes;
$ontext
40
41
42
    // Update ts_unit
    if (mTimeseries_loop_read(mSolve, 'ts_unit'),
        put_utility 'gdxin' / '%input_dir%/ts_unit/' tSolve.tl:0 '.gdx';
43
44
45
46
47
        execute_load ts_unit_update=ts_unit;
        ts_unit(unit, *, f_solve(f), tt_forecast(t))
            ${ not mf_realization(mSolve, f) } // Realization not updated
            = ts_unit_update(unit, *, f, t);
    ); // END if('ts_unit')
48

49
    // Update ts_effUnit
50
    if (mTimeseries_loop_read(mSolve, 'ts_effUnit'),
51
        put_utility 'gdxin' / '%input_dir%/ts_effUnit/' tSolve.tl:0 '.gdx';
52
53
54
55
56
        execute_load ts_effUnit_update=ts_effUnit;
        ts_effUnit(effGroupSelectorUnit(effSelector, unit, effSelector), *, f_solve(f), tt_forecast(t)))
            ${ not mf_realization(mSolve, f) } // Realization not updated
            = ts_effUnit_update(effSelector, unit, effSelector, *, ft(f, t));
    ); // END if('ts_effUnit')
57
58

    // Update ts_effGroupUnit
59
    if (mTimeseries_loop_read(mSolve, 'ts_effGroupUnit'),
60
        put_utility 'gdxin' / '%input_dir%/ts_effGroupUnit/' tSolve.tl:0 '.gdx';
61
62
63
64
65
66
        execute_load ts_effGroupUnit_update=ts_effGroupUnit;
        ts_effGroupUnit(effSelector, unit, *, f_solve(f), tt_forecast(t))
            ${ not mf_realization(mSolve, f) } // Realization not updated
            = ts_effGroupUnit_update(effSelector, unit, *, f, t);
    ); // END if('ts_effGroupUnit')
$offtext
67
68

    // Update ts_influx
69
    if (mTimeseries_loop_read(mSolve, 'ts_influx'),
70
        put_utility 'gdxin' / '%input_dir%/ts_influx/' tSolve.tl:0 '.gdx';
71
72
73
74
75
        execute_load ts_influx_update=ts_influx;
        ts_influx(gn(grid, node), f_solve(f), tt_forecast(t))
            ${ not mf_realization(mSolve, f) } // Realization not updated
            = ts_influx_update(grid, node, f, t);
    ); // END if('ts_influx')
76
77

    // Update ts_cf
78
    if (mTimeseries_loop_read(mSolve, 'ts_cf'),
79
        put_utility 'gdxin' / '%input_dir%/ts_cf/' tSolve.tl:0 '.gdx';
80
81
82
83
84
        execute_load ts_cf_update=ts_cf;
        ts_cf(flowNode(flow, node), f_solve(f), tt_forecast(t))
            ${ not mf_realization(mSolve, f) } // Realization not updated
            = ts_cf_update(flow, node, f, t);
    ); // END if('ts_cf')
85
86

    // Update ts_reserveDemand
87
    if (mTimeseries_loop_read(mSolve, 'ts_reserveDemand'),
88
        put_utility 'gdxin' / '%input_dir%/ts_reserveDemand/' tSolve.tl:0 '.gdx';
89
90
91
92
93
        execute_load ts_reserveDemand_update=ts_reserveDemand;
        ts_reserveDemand(restypeDirectionNode(restype, up_down, node), f_solve(f), tt_forecast(t))
            ${ not mf_realization(mSolve, f) } // Realization not updated
            = ts_reserveDemand_update(restype, up_down, node, f, t);
    ); // END if('ts_reserveDemand')
94
95

    // Update ts_node
96
    if (mTimeseries_loop_read(mSolve, 'ts_node'),
97
        put_utility 'gdxin' / '%input_dir%/ts_node/' tSolve.tl:0 '.gdx';
98
99
100
101
102
103
104
105
        execute_load ts_node_update=ts_node;
        ts_node(gn(grid, node), param_gnBoundaryTypes, f_solve(f), tt_forecast(t))
            ${ not mf_realization(mSolve, f) } // Realization not updated
            = ts_node_update(grid, node, param_gnBoundaryTypes, f, t);
    ); // END if('ts_node')

* --- NO FORECAST DIMENSION, SHOULD THESE BE HANDLED SEPARATELY? --------------
// Currently, only updated until the forecast horizon, but is this correct?
106
107

    // Update ts_fuelPriceChange
108
    if (mTimeseries_loop_read(mSolve, 'ts_fuelPriceChange'),
109
        put_utility 'gdxin' / '%input_dir%/ts_fuelPriceChange/' tSolve.tl:0 '.gdx';
110
111
112
113
        execute_load ts_fuelPriceChange_update=ts_fuelPriceChange;
        ts_fuelPriceChange(fuel, tt_forecast(t))
            = ts_fuelPriceChange_update(fuel, t);
    ); // END if('ts_fuelPriceChange')
114
115

    // Update ts_unavailability
116
    if (mTimeseries_loop_read(mSolve, 'ts_unavailability'),
117
        put_utility 'gdxin' / '%input_dir%/ts_unavailability/' tSolve.tl:0 '.gdx';
118
119
120
121
        execute_load ts_unavailability_update=ts_unavailability;
        ts_unavailability(unit, tt_forecast(t))
            = ts_unavailability_update(unit, t);
    ); // END if('ts_unavailability')
122

123
    // Update the next forecast
124
    tForecastNext(mSolve)
125
        = tForecastNext(mSolve) + mSettings(mSolve, 't_forecastJump');
126
);
127

128
129
130
131
132
133
* =============================================================================
* --- Optional forecast improvement code here ---------------------------------
* =============================================================================

// Forecasts not improved

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
* =============================================================================
* --- Aggregate time series data for the time intervals -----------------------
* =============================================================================

// Loop over the defined blocks of intervals
loop(cc(counter),

    // Retrieve interval block time steps
    option clear = tt_interval;
    tt_interval(t) = tt_block(counter, t);

    // If stepsPerInterval equals one, simply use all the steps within the block
    if(mInterval(mSolve, 'stepsPerInterval', counter) = 1,

        // Select time series data matching the intervals, for stepsPerInterval = 1, this is trivial.
        loop(ft(f_solve, tt_interval(t)),
            ts_cf_(flowNode(flow, node), f_solve, t, s)$msf(mSolve, s, f_solve)
                = ts_cf(flow, node, f_solve, t + (dt_sampleOffset(flow, node, 'ts_cf', s) + dt_circular(t)));
            ts_influx_(gn(grid, node), f_solve, t, s)$msf(mSolve, s, f_solve)
                = ts_influx(grid, node, f_solve, t + (dt_sampleOffset(grid, node, 'ts_influx', s) + dt_circular(t)));
            ts_unit_(unit, param_unit, f_solve, t)
              ${p_unit(unit, 'useTimeseries')} // Only include units that have timeseries attributed to them
                = ts_unit(unit, param_unit, f_solve, t+dt_circular(t));
            // Reserve demand relevant only up until reserve_length
            ts_reserveDemand_(restypeDirectionNode(restype, up_down, node), f_solve, t)
              ${ord(t) <= tSolveFirst + p_nReserves(node, restype, 'reserve_length')}
                = ts_reserveDemand(restype, up_down, node, f_solve, t+dt_circular(t));
            ts_node_(gn_state(grid, node), param_gnBoundaryTypes, f_solve, t, s)
              ${p_gnBoundaryPropertiesForStates(grid, node, param_gnBoundaryTypes, 'useTimeseries')
                and msf(mSolve, s, f_solve)}
                = ts_node(grid, node, param_gnBoundaryTypes, f_solve, t + (dt_sampleOffset(grid, node, param_gnBoundaryTypes, s) + dt_circular(t)));
            // Fuel price time series
            ts_fuelPrice_(fuel, t)
                = ts_fuelPrice(fuel, t+dt_circular(t));
        ); // END loop(ft)

    // If stepsPerInterval exceeds 1 (stepsPerInterval < 1 not defined)
    elseif mInterval(mSolve, 'stepsPerInterval', counter) > 1,

        // Select and average time series data matching the intervals, for stepsPerInterval > 1
        // Loop over the t:s of the interval
        loop(ft(f_solve, tt_interval(t)),
            // Select t:s within the interval
            Option clear = tt;
            tt(t_)
                ${tt_interval(t_)
                  and ord(t_) >= ord(t)
                  and ord(t_) < ord(t) + mInterval(mSolve, 'stepsPerInterval', counter)
                 }
                = yes;
            ts_influx_(gn(grid, node), f_solve, t, s)$msf(mSolve, s, f_solve)
                = sum(tt(t_), ts_influx(grid, node, f_solve, t_ + (dt_sampleOffset(grid, node, 'ts_influx', s) + dt_circular(t_))))
                    / mInterval(mSolve, 'stepsPerInterval', counter);
            ts_cf_(flowNode(flow, node), f_solve, t, s)$msf(mSolve, s, f_solve)
                = sum(tt(t_), ts_cf(flow, node, f_solve, t_ + (dt_sampleOffset(flow, node, 'ts_cf', s) + dt_circular(t_))))
                    / mInterval(mSolve, 'stepsPerInterval', counter);
            ts_unit_(unit, param_unit, f_solve, t)
              ${ p_unit(unit, 'useTimeseries')} // Only include units with timeseries attributed to them
                = sum(tt(t_), ts_unit(unit, param_unit, f_solve, t_+dt_circular(t_)))
                    / mInterval(mSolve, 'stepsPerInterval', counter);
            // Reserves relevant only until reserve_length
            ts_reserveDemand_(restypeDirectionNode(restype, up_down, node), f_solve, t)
              ${ord(t) <= tSolveFirst + p_nReserves(node, restype, 'reserve_length')  }
                = sum(tt(t_), ts_reserveDemand(restype, up_down, node, f_solve, t_+dt_circular(t_)))
                    / mInterval(mSolve, 'stepsPerInterval', counter);
            ts_node_(gn_state(grid, node), param_gnBoundaryTypes, f_solve, t, s)
              ${p_gnBoundaryPropertiesForStates(grid, node, param_gnBoundaryTypes, 'useTimeseries')
                and msf(mSolve, s, f_solve)}
                   // Take average if not a limit type
                = (sum(tt(t_), ts_node(grid, node, param_gnBoundaryTypes, f_solve, t_ + (dt_sampleOffset(grid, node, param_gnBoundaryTypes, s) + dt_circular(t_))))
                    / mInterval(mSolve, 'stepsPerInterval', counter))$(not sameas(param_gnBoundaryTypes, 'upwardLimit') or sameas(param_gnBoundaryTypes, 'downwardLimit'))
                  // Maximum lower limit
                  + smax(tt(t_), ts_node(grid, node, param_gnBoundaryTypes, f_solve, t_ + (dt_sampleOffset(grid, node, param_gnBoundaryTypes, s) + dt_circular(t_))))
                      $sameas(param_gnBoundaryTypes, 'downwardLimit')
                  // Minimum upper limit
                  + smin(tt(t_), ts_node(grid, node, param_gnBoundaryTypes, f_solve, t_ + (dt_sampleOffset(grid, node, param_gnBoundaryTypes, s) + dt_circular(t_))))
                       $sameas(param_gnBoundaryTypes, 'upwardLimit');
            // Fuel price time series
            ts_fuelPrice_(fuel, t)
                = sum(tt(t_), ts_fuelPrice(fuel, t_+dt_circular(t_)))
                    / mInterval(mSolve, 'stepsPerInterval', counter);
            ); // END loop(ft)

    ); // END if(stepsPerInterval)
); // END loop(counter)

Erkka Rinne's avatar
Erkka Rinne committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
* =============================================================================
* --- Input data processing ---------------------------------------------------
* =============================================================================

* --- Scenario reduction ------------------------------------------------------
s_active(s) = ms(mSolve, s);

if(active(mSolve, 'scenred'),
    $$include 'inc/scenred.gms'
);

* --- Smooting of stochastic scenarios ----------------------------------------
$ontext
First calculate standard deviation for over all samples, then smoothen the scenarios
following the methodology presented in [1, p. 443]. This avoids a discontinuity
`jump' after the initial sample.

[1] A. Helseth, B. Mo, A. Lote Henden, and G. Warland, "Detailed long-term hydro-
    thermal scheduling for expansion planning in the Nordic power system," IET Gener.
    Transm. Distrib., vol. 12, no. 2, pp. 441 - 447, 2018.
$offtext

* Influx
loop(gn(grid, node)$p_autocorrelation(grid, node, 'ts_influx'),
    ts_influx_mean(grid, node, ft(f, t))$mf_central(mSolve, f)
        = sum(s_parallel(s_active), ts_influx_(grid, node, f, t, s_active))
                / sum(s_parallel(s_active), 1);

    ts_influx_std(grid, node, ft(f, t))$mf_central(mSolve, f)
        = sqrt(sum(s_parallel(s_active), sqr(ts_influx_(grid, node, f, t, s_active)
                                         - ts_influx_mean(grid, node, f, t)))
                / sum(s_parallel(s_active), 1)
          );

    // Do smoothing
    loop(mst_end(ms_initial(mSolve, s_), t_),
        ts_influx_(grid, node, ft(f, t), s)$(ts_influx_std(grid, node, f, t_+dt_circular(t_))
                                             and sft(s, f, t)
                                             and not ms_initial(mSolve, s))
            = min(p_tsMaxValue(node, 'ts_influx'), max(p_tsMinValue(node, 'ts_influx'),
              ts_influx_(grid, node, f, t, s)
              + (ts_influx_(grid, node, f, t_, s_)
                 - ts_influx_(grid, node, f, t_, s))
                * (ts_influx_std(grid, node, f, t+dt_circular(t))
                    / ts_influx_std(grid, node, f, t_+dt_circular(t_)))
                * power(p_autocorrelation(grid, node, 'ts_influx'), abs(ord(t) - ord(t_)))
              ));
    );
);

* CF
loop(flowNode(flow, node)$p_autocorrelation(flow, node, 'ts_cf'),
    ts_cf_mean(flow, node, ft(f, t))$mf_central(mSolve, f)
        = sum(s_parallel(s_active), ts_cf_(flow, node, f, t, s_active))
                / sum(s_parallel(s_active), 1);

    ts_cf_std(flow, node, ft(f, t))$mf_central(mSolve, f)
        = sqrt(sum(s_parallel(s_active), sqr(ts_cf_(flow, node, f, t, s_active)
                                         - ts_cf_mean(flow, node, f, t)))
                / sum(s_parallel(s_active), 1)
          );

    // Do smoothing
    loop(mst_end(ms_initial(mSolve, s_), t_),
        ts_cf_(flow, node, ft(f, t), s)$(ts_cf_std(flow, node, f, t_+dt_circular(t_))
                                         and sft(s, f, t)
                                         and not ms_initial(mSolve, s))
            = min(p_tsMaxValue(node, 'ts_cf'), max(p_tsMinValue(node, 'ts_cf'),
              ts_cf_(flow, node, f, t, s)
              + (ts_cf_(flow, node, f, t_, s_)
                 - ts_cf_(flow, node, f, t_, s))
                * (ts_cf_std(flow, node, f, t+dt_circular(t))
                    / ts_cf_std(flow, node, f, t_+dt_circular(t_)))
                * power(p_autocorrelation(flow, node, 'ts_cf'), abs(ord(t) - ord(t_)))
              ));
    );
);

298
299
300
301
* =============================================================================
* --- Old code, potentially still helpful? ------------------------------------
* =============================================================================

302
$ontext
303
304
305
    // Define t_latestForecast
    Option clear = t_latestForecast;
    t_latestForecast(tSolve) = yes;
306
307

    // Define updated time window
308
    Option clear = tt_forecast;
309
    tt_forecast(t_full(t))${    ord(t) >= ord(tSolve)
310
                                and ord(t) <= ord(tSolve) + mSettings(mSolve, 't_forecastLengthUnchanging') + mSettings(mSolve, 't_forecastJump')
311
                                }
312
        = yes;
313

314
315
316
    // Define temporary time displacement to reach t_latestForecast
    Option clear = ddt;
    ddt(tt_forecast(t)) = ord(tSolve) - ord(t);
317

318
319
* --- Update Forecast Data ----------------------------------------------------

320
321
322
323
    ts_cf(flowNode(flow, node), f_solve(f), tt_forecast(t))${   ts_forecast(flow, node, t+ddt(t), f, t) // Only update data for capacity factors with forecast. NOTE! This results in problems if the forecast has values of zero!
                                                                and mf(mSolve, f)
                                                                }
        = ts_forecast(flow, node, t+ddt(t), f, t);
324
325

* --- Read the Tertiary Reserve Requirements ----------------------------------
326

327
    put_utility 'gdxin' / '%input_dir%/tertiary/' tSolve.tl:0 '.gdx';
328
    execute_load ts_tertiary;
Topi Rasku's avatar
Topi Rasku committed
329
330
331
332
    ts_reserveDemand(restypeDirectionNode('tertiary', up_down, node), f_solve(f), tt_forecast(t))${ mf(mSolve, f)
                                                                                                    and not mf_realization(mSolve, f)
                                                                                                    and flowNode('wind', node)
                                                                                                    }
333
334
        = ts_tertiary('wind', node, t+ddt(t), up_down, t)
            * sum(flowUnit('wind', unit), p_gnu('elec', node, unit, 'maxGen'));
335

336
$offtext
337

338
339

* --- Improve forecasts -------------------------------------------------------
340
$ontext
341
// !!! TEMPORARY MEASURES !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
342

343
344
if(mSettings(mSolve, 'forecasts') > 0,

345
346
347
348
349
350
351
    // Define updated time window
    Option clear = tt_forecast;
    tt_forecast(t_full(t))${    ord(t) >= ord(tSolve)
                                and ord(t) <= ord(tSolve) + mSettings(mSolve, 't_forecastLengthUnchanging') + mSettings(mSolve, 't_forecastJump')
                                }
        = yes;

352
    // Define updated time window
353
    Option clear = tt;
Topi Rasku's avatar
Topi Rasku committed
354
    tt(tt_forecast(t))${    ord(t) > ord(tSolve)
355
356
                            and ord(t) <= ord(tSolve) + f_improve
                            }
357
        = yes;
358

359
360
361
362
363
364
365
366
367
368
    // Temporary forecast displacement to reach the central forecast
    Option clear = ddf;
    ddf(f_solve(f), tt(t))${ not mf_central(mSolve, f) }
        = sum(mf_central(mSolve, f_), ord(f_) - ord(f));

    // Temporary forecast displacement to reach the realized forecast
    Option clear = ddf_;
    ddf_(f_solve(f), tt(t))${ not mf_realization(mSolve, f) }
        = sum(mf_realization(mSolve, f_), ord(f_) - ord(f));

369
    // Calculate the upper and lower forecasts based on the original central forecast
370
371
372
373
374
    ts_cf(flowNode(flow, node), f_solve(f), tt(t))${    not mf_realization(mSolve, f)
                                                        and not mf_central(mSolve, f)
                                                        }
                = ts_cf(flow, node, f, t) - ts_cf(flow, node, f+ddf(f,t), t);

375
    // Improve forecasts during the dispatch
376
377
    // Improve central capacity factors, linear improvement towards fRealization
    ts_cf(flowNode(flow, node), f_solve(f), tt(t))${    not mf_realization(mSolve, f)
378
                                                        and mf_central(mSolve, f)
379
                                                        }
380
381
382
383
        = (
            (ord(t) - ord(tSolve)) * ts_cf(flow, node, f, t)
            + (f_improve + ord(tSolve) - ord(t)) * ts_cf(flow, node, f+ddf_(f,t), t)
            )
384
                / f_improve;
385
386
387
388
389
390
391

    // Update the upper and lower forecasts based on the improved central forecast
    ts_cf(flowNode(flow, node), f_solve(f), tt(t))${    not mf_realization(mSolve, f)
                                                        and not mf_central(mSolve, f)
                                                        }
        = min(max( ts_cf(flow, node, f, t) + ts_cf(flow, node, f+ddf(f,t), t), 0),1);

392
); // END IF forecasts
393
$offtext