2d_constraints.gms 131 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
$ontext
This file is part of Backbone.

Backbone is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Backbone is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Backbone.  If not, see <http://www.gnu.org/licenses/>.
$offtext

18

19
* =============================================================================
20
* --- Constraint Equation Definitions -----------------------------------------
21
22
23
24
* =============================================================================

* --- Energy Balance ----------------------------------------------------------

25
26
27
q_balance(gn(grid, node), msft(m, s, f, t)) // Energy/power balance dynamics solved using implicit Euler discretization
    ${  not p_gn(grid, node, 'boundAll')
        } ..
28
29
30
31

    // The left side of the equation is the change in the state (will be zero if the node doesn't have a state)
    + p_gn(grid, node, 'energyStoredPerUnitOfState')${gn_state(grid, node)} // Unit conversion between v_state of a particular node and energy variables (defaults to 1, but can have node based values if e.g. v_state is in Kelvins and each node has a different heat storage capacity)
        * [
32
33
            + v_state(grid, node, s, f+df_central(f,t), t)                   // The difference between current
            - v_state(grid, node, s+ds_state(grid,node,s,t), f+df(f,t+dt(t)), t+dt(t))       // ... and previous state of the node
34
35
36
37
38
39
40
41
            ]

    =E=

    // The right side of the equation contains all the changes converted to energy terms
    + p_stepLength(m, f, t) // Multiply with the length of the timestep to convert power into energy
        * (
            // Self discharge out of the model boundaries
42
            - p_gn(grid, node, 'selfDischargeLoss')${ gn_state(grid, node) }
43
                * v_state(grid, node, s, f+df_central(f,t), t) // The current state of the node
44
45

            // Energy diffusion from this node to neighbouring nodes
46
            - sum(gnn_state(grid, node, to_node),
47
                + p_gnn(grid, node, to_node, 'diffCoeff')
48
                    * v_state(grid, node, s, f+df_central(f,t), t)
49
50
51
                ) // END sum(to_node)

            // Energy diffusion from neighbouring nodes to this node
52
            + sum(gnn_state(grid, from_node, node),
53
                + p_gnn(grid, from_node, node, 'diffCoeff')
54
                    * v_state(grid, from_node, s, f+df_central(f,t), t) // Incoming diffusion based on the state of the neighbouring node
55
56
57
                ) // END sum(from_node)

            // Controlled energy transfer, applies when the current node is on the left side of the connection
58
            - sum(gn2n_directional(grid, node, node_),
59
                + (1 - p_gnn(grid, node, node_, 'transferLoss')) // Reduce transfer losses
60
                    * v_transfer(grid, node, node_, s, f, t)
61
                + p_gnn(grid, node, node_, 'transferLoss') // Add transfer losses back if transfer is from this node to another node
62
                    * v_transferRightward(grid, node, node_, s, f, t)
63
64
65
                ) // END sum(node_)

            // Controlled energy transfer, applies when the current node is on the right side of the connection
66
            + sum(gn2n_directional(grid, node_, node),
67
                + v_transfer(grid, node_, node, s, f, t)
68
                - p_gnn(grid, node_, node, 'transferLoss') // Reduce transfer losses if transfer is from another node to this node
69
                    * v_transferRightward(grid, node_, node, s, f, t)
70
71
72
73
                ) // END sum(node_)

            // Interactions between the node and its units
            + sum(gnuft(grid, node, unit, f, t),
74
                + v_gen(grid, node, unit, s, f, t) // Unit energy generation and consumption
75
                )
76
77

            // Spilling energy out of the endogenous grids in the model
78
            - v_spill(grid, node, s, f, t)${node_spill(node)}
79
80

            // Power inflow and outflow timeseries to/from the node
81
            + ts_influx_(grid, node, f, t, s)   // Incoming (positive) and outgoing (negative) absolute value time series
82
83

            // Dummy generation variables, for feasibility purposes
84
85
            + vq_gen('increase', grid, node, s, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
            - vq_gen('decrease', grid, node, s, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
86
    ) // END * p_stepLength
87
;
88
89

* --- Reserve Demand ----------------------------------------------------------
90
91
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.
92

93
q_resDemand(restypeDirectionNode(restype, up_down, node), sft(s, f, t))
94
95
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
96
                  and sft_realized(s, f, t)]
97
        } ..
98

99
100
    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, up_down, node, unit)},
101
        + v_reserve(restype, up_down, node, unit, s, f+df_reserves(node, restype, f, t), t)
102
103
104
105
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
106
107
        ) // END sum(nuft)

108
    // Reserve provision from other reserve categories when they can be shared
109
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, up_down, restype)},
110
        + v_reserve(restype_, up_down, node, unit, s, f+df_reserves(node, restype_, f, t), t)
111
            * p_nuRes2Res(node, unit, restype_, up_down, restype)
112
113
114
115
116
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
117
118
        ) // END sum(nuft)

119
    // Reserve provision to this node via transfer links
120
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},
121
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
122
            * v_resTransferRightward(restype, up_down, node_, node, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
123
        ) // END sum(gn2n_directional)
124
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},
125
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
126
            * v_resTransferLeftward(restype, up_down, node, node_, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
127
128
129
130
131
132
133
134
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves
    + ts_reserveDemand_(restype, up_down, node, f, t)${p_nReserves(node, restype, 'use_time_series')}
    + p_nReserves(node, restype, up_down)${not p_nReserves(node, restype, 'use_time_series')}

135
136
    // Reserve demand increase because of units
    + sum(nuft(node, unit, f, t)${p_nuReserves(node, unit, restype, 'reserve_increase_ratio')}, // Could be better to have 'reserve_increase_ratio' separately for up and down directions
137
        + sum(gnu(grid, node, unit), v_gen(grid, node, unit, s, f, t)) // Reserve sets and variables are currently lacking the grid dimension...
138
139
140
            * p_nuReserves(node, unit, restype, 'reserve_increase_ratio')
        ) // END sum(nuft)

141
    // Reserve provisions to another nodes via transfer links
142
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
143
        + v_resTransferRightward(restype, up_down, node, node_, s, f+df_reserves(node, restype, f, t), t)
144
        ) // END sum(gn2n_directional)
145
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
146
        + v_resTransferLeftward(restype, up_down, node_, node, s, f+df_reserves(node, restype, f, t), t)
147
148
149
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
150
151
    - vq_resDemand(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
152
;
153

154
155
156
157
* --- N-1 Reserve Demand ----------------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

158
q_resDemandLargestInfeedUnit(grid, restypeDirectionNode(restype, 'up', node), unit_fail(unit_), sft(s, f, t))
159
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
160
        and gn(grid, node)
161
162
163
        and not [ restypeReleasedForRealization(restype)
            and ft_realized(f, t)
            ]
164
        and p_nuReserves(node, unit_, restype, 'portion_of_infeed_to_reserve')
165
        } ..
166

167
168
    // Reserve provision by capable units on this node excluding the failing one
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'up', node, unit) and (ord(unit_) ne ord(unit))},
169
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
170
171
172
173
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
174
175
176
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
177
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'up', restype)},
178
        + v_reserve(restype_, 'up', node, unit, s, f+df_reserves(node, restype_, f, t), t)
179
            * p_nuRes2Res(node, unit, restype_, 'up', restype)
180
181
182
183
184
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
185
186
187
188
189
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node_, node)},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
190
            * v_resTransferRightward(restype, 'up', node_, node, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
191
192
193
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node_, node)},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
194
            * v_resTransferLeftward(restype, 'up', node, node_, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
195
196
197
198
199
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves of the failing one
200
    v_gen(grid,node,unit_,s,f,t) * p_nuReserves(node, unit_, restype, 'portion_of_infeed_to_reserve')
201
202

    // Reserve provisions to another nodes via transfer links
203
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
204
        + v_resTransferRightward(restype, 'up', node, node_, s, f+df_reserves(node, restype, f, t), t)
205
        ) // END sum(gn2n_directional)
206
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
207
        + v_resTransferLeftward(restype, 'up', node_, node, s, f+df_reserves(node, restype, f, t), t)
208
209
210
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
211
212
    - vq_resDemand(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
213
;
214
215
* --- Maximum Downward Capacity -----------------------------------------------

Topi Rasku's avatar
Topi Rasku committed
216
q_maxDownward(gnu_output(grid, node, unit), msft(m, s, f, t))
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    ${  gnuft(grid, node, unit, f, t)
        and {
            [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
                and sum(restype, nuRescapable(restype, 'down', node, unit)) // downward reserves
                ]
            // NOTE!!! Could be better to form a gnuft_reserves subset?
            or [ // the unit has an online variable
                uft_online(unit, f, t)
                and [
                    (unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeGen')) // generators with a min. load
                    or p_gnu(grid, node, unit, 'maxCons') // or consuming units with an online variable
                    ]
                ] // END or
            or [ // consuming units with investment possibility
                gnu_input(grid, node, unit)
                and [unit_investLP(unit) or unit_investMIP(unit)]
                ]
        }} ..

236
    // Energy generation/consumption
237
    + v_gen(grid, node, unit, s, f, t)
238
239

    // Considering output constraints (e.g. cV line)
240
241
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
242
            * v_gen(grid_output, node_, unit, s, f, t)
243
244
245
        ) // END sum(gngnu_constrainedOutputRatio)

    // Downward reserve participation
246
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
247
        + v_reserve(restype, 'down', node, unit, s, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
248
249
250
251
252
253
        ) // END sum(nuRescapable)

    =G= // Must be greater than minimum load or maximum consumption  (units with min-load and both generation and consumption are not allowed)

    // Generation units, greater than minload
    + p_gnu(grid, node, unit, 'unitSizeGen')
254
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
255
256
257
258
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [ // Online variables should only be generated for units with restrictions
259
260
            + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f+df_central(f,t), t)} // LP online variant
            + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f+df_central(f,t), t)} // MIP online variant
261
262
            ] // END v_online

263
264
265
266
    // Units in run-up phase neet to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
267
268
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
269
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
270
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
271
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
272
                    ]
273
                    * p_uCounter_runUpMin(unit, counter)
274
275
276
277
278
279
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)

    // Units in shutdown phase need to keep up with the shutdown rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
280
281
282
283
284
285
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                ]
286
                * p_uCounter_shutdownMin(unit, counter)
287
            ) // END sum(shutdownCounter)
288

289
290
291
292
293
    // Consuming units, greater than maxCons
    // Available capacity restrictions
    - p_unit(unit, 'availability')
        * [
            // Capacity factors for flow units
294
            + sum(flowUnit(flow, unit),
295
                + ts_cf_(flow, node, f, t, s)
296
297
298
299
300
301
302
303
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxCons')${not uft_online(unit, f, t)} // Use initial maximum if no online variables
            + p_gnu(grid, node, unit, 'unitSizeCons')
                * [
304
                    // Capacity online
305
306
                    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
                    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
307
308
309
310
311
312
313
314

                    // Investments to additional non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f, t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)} // NOTE! v_invest_LP also for consuming units is positive
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)} // NOTE! v_invest_MIP also for consuming units is positive
                        ) // END sum(t_invest)
315
316
                    ] // END * p_gnu(unitSizeCons)
            ] // END * p_unit(availability)
317
;
318
319
320

* --- Maximum Upwards Capacity ------------------------------------------------

Topi Rasku's avatar
Topi Rasku committed
321
q_maxUpward(gnu_output(grid, node, unit), msft(m, s, f, t))
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    ${  gnuft(grid, node, unit, f, t)
        and {
            [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
                and sum(restype, nuRescapable(restype, 'up', node, unit)) // upward reserves
                ]
            or [
                uft_online(unit, f, t) // or the unit has an online variable
                and [
                    [unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeCons')] // consuming units with min_load
                    or [p_gnu(grid, node, unit, 'maxGen')]                          // generators with an online variable
                    ]
                ]
            or [
                gnu_output(grid, node, unit) // generators with investment possibility
                and (unit_investLP(unit) or unit_investMIP(unit))
                ]
        }}..

340
    // Energy generation/consumption
341
    + v_gen(grid, node, unit, s, f, t)
342
343
344
345

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
346
            * v_gen(grid_output, node_, unit, s, f, t)
347
348
349
        ) // END sum(gngnu_constrainedOutputRatio)

    // Upwards reserve participation
350
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
351
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
352
353
354
355
356
        ) // END sum(nuRescapable)

    =L= // must be less than available/online capacity

    // Consuming units
357
    - p_gnu(grid, node, unit, 'unitSizeCons')
358
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
359
360
361
362
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [
363
364
            + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
            + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
365
366
367
368
369
370
371
            ] // END * p_gnu(unitSizeCons)

    // Generation units
    // Available capacity restrictions
    + p_unit(unit, 'availability') // Generation units are restricted by their (available) capacity
        * [
            // Capacity factor for flow units
372
            + sum(flowUnit(flow, unit),
373
                + ts_cf_(flow, node, f, t, s)
374
375
376
377
378
379
380
381
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxGen')${not uft_online(unit, f, t)} // Use initial maxGen if no online variables
            + p_gnu(grid, node, unit, 'unitSizeGen')
                * [
382
                    // Capacity online
383
384
                    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f ,t)}
                    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
385
386
387
388
389
390
391
392

                    // Investments to non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f ,t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)}
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                        ) // END sum(t_invest)
393
394
                    ] // END * p_gnu(unitSizeGen)
            ] // END * p_unit(availability)
395

396
397
398
399
    // Units in run-up phase neet to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
400
401
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
402
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
403
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
404
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
405
                    ]
406
                    * p_uCounter_runUpMax(unit, counter)
407
408
409
410
411
412
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)

    // Units in shutdown phase need to keep up with the shutdown rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
413
414
415
416
417
418
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                ]
419
                * p_uCounter_shutdownMax(unit, counter)
420
            ) // END sum(shutdownCounter)
421
;
422

423
424
* --- Reserve Provision of Units with Investments -----------------------------

425
426
427
428
429
430
431
q_reserveProvision(nuRescapable(restypeDirectionNode(restype, up_down, node), unit), sft(s, f, t))
    ${  ord(t) <= tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and nuft(node, unit, f, t)
        and (unit_investLP(unit) or unit_investMIP(unit))
        and not ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)
        } ..

432
    + v_reserve(restype, up_down, node, unit, s, f+df_reserves(node, restype, f, t), t)
433
434
435
436
437
438
439
440
441
442
443
444
445

    =L=

    + p_nuReserves(node, unit, restype, up_down)
        * [
            + sum(grid, p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )  // Reserve sets and variables are currently lacking the grid dimension...
            + sum(t_invest(t_)${ ord(t_)<=ord(t) },
                + v_invest_LP(unit, t_)${unit_investLP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                ) // END sum(t_)
            ]
446
447
448
449
        * p_unit(unit, 'availability') // Taking into account availability...
        * [
            // ... and capacity factor for flow units
            + sum(flowUnit(flow, unit),
450
                + ts_cf_(flow, node, f, t, s)
451
452
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
453
454
455
            ] // How to consider reserveReliability in the case of investments when we typically only have "realized" time steps?
;

456
457
* --- Unit Startup and Shutdown -----------------------------------------------

458
459
460
461
q_startshut(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        }..

462
    // Units currently online
463
464
    + v_online_LP (unit, s, f+df_central(f,t), t)${uft_onlineLP (unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
465
466

    // Units previously online
467
    // The same units
468
    - v_online_LP (unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
469
                                                             and not uft_aggregator_first(unit, f, t) } // This reaches to tFirstSolve when dt = -1
470
    - v_online_MIP(unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
471
472
473
474
                                                             and not uft_aggregator_first(unit, f, t) }

    // Aggregated units just before they are turned into aggregator units
    - sum(unit_${unitAggregator_unit(unit, unit_)},
475
476
        + v_online_LP (unit_, s, f+df(f,t+dt(t)), t+dt(t))${uft_onlineLP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
        + v_online_MIP(unit_, s, f+df(f,t+dt(t)), t+dt(t))${uft_onlineMIP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
477
        )${uft_aggregator_first(unit, f, t)} // END sum(unit_)
478

479
480
    =E=

481
    // Unit startup and shutdown
482

483
    // Add startup of units dt_toStartup before the current t (no start-ups for aggregator units before they become active)
484
    + sum(unitStarttype(unit, starttype),
485
        + v_startup_LP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
486
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
487
        + v_startup_MIP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
488
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
489
        )${not [unit_aggregator(unit) and ord(t) + dt_toStartup(unit, t) <= tSolveFirst + p_unit(unit, 'lastStepNotAggregated')]} // END sum(starttype)
490

491
492
493
494
    // NOTE! According to 3d_setVariableLimits,
    // cannot start a unit if the time when the unit would become online is outside
    // the horizon when the unit has an online variable
    // --> no need to add start-ups of aggregated units to aggregator units
495

496
    // Shutdown of units at time t
497
498
499
500
    - v_shutdown_LP(unit, s, f, t)
        ${ uft_onlineLP(unit, f, t) }
    - v_shutdown_MIP(unit, s, f, t)
        ${ uft_onlineMIP(unit, f, t) }
501
;
502

503
*--- Startup Type -------------------------------------------------------------
504
// !!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
505
506
507
// This formulation doesn't work as intended when unitCount > 1, as one recent
// shutdown allows for multiple hot/warm startups on subsequent time steps.
// Pending changes.
508

509
510
511
512
q_startuptype(ms(m, s), starttypeConstrained(starttype), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and unitStarttype(unit, starttype)
        } ..
513
514

    // Startup type
515
516
    + v_startup_LP(unit, starttype, s, f, t)${ uft_onlineLP(unit, f, t) }
    + v_startup_MIP(unit, starttype, s, f, t)${ uft_onlineMIP(unit, f, t) }
517
518
519
520

    =L=

    // Subunit shutdowns within special startup timeframe
521
522
523
524
525
526
527
    + sum(unitCounter(unit, counter)${  dt_starttypeUnitCounter(starttype, unit, counter)
                                        and t_active(t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
                                        },
        + v_shutdown_LP(unit, s, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)) }
        + v_shutdown_MIP(unit, s, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)) }
528
529
530
        ) // END sum(counter)

    // NOTE: for aggregator units, shutdowns for aggregated units are not considered
531
;
532

533

534
535
*--- Online Limits with Startup Type Constraints and Investments --------------

536
537
538
539
540
541
542
543
544
q_onlineLimit(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and {
            p_unit(unit, 'minShutdownHours')
            or p_u_runUpTimeIntervals(unit)
            or unit_investLP(unit)
            or unit_investMIP(unit)
        }} ..

545
    // Online variables
546
547
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f ,t)}
548
549
550
551
552
553

    =L=

    // Number of existing units
    + p_unit(unit, 'unitCount')

554
    // Number of units unable to become online due to restrictions
555
556
557
558
559
560
561
    - sum(unitCounter(unit, counter)${  dt_downtimeUnitCounter(unit, counter)
                                        and t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                        },
        + v_shutdown_LP(unit, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
        + v_shutdown_MIP(unit, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
562
563
564
        ) // END sum(counter)

    // Number of units unable to become online due to restrictions (aggregated units in the past horizon or if they have an online variable)
565
    - sum(unitAggregator_unit(unit, unit_),
566
567
568
569
570
571
572
        + sum(unitCounter(unit, counter)${  dt_downtimeUnitCounter(unit, counter)
                                            and t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                            },
            + v_shutdown_LP(unit_, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                ${ uft_onlineLP_withPrevious(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
            + v_shutdown_MIP(unit_, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                ${ uft_onlineMIP_withPrevious(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
573
574
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
575
576
577

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
578
579
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
580
581
582
        ) // END sum(t_invest)
;

583
584
585
586
*--- Both q_offlineAfterShutdown and q_onlineOnStartup work when there is only one unit.
*    These equations prohibit single units turning on and off at the same time step.
*    Unfortunately there seems to be no way to prohibit this when unit count is > 1.
*    (it shouldn't be worthwhile anyway if there is a startup cost, but it can fall within the solution gap).
587
588
589
590
q_onlineOnStartUp(s_active(s), uft_online(unit, f, t))
    ${  sft(s, f, t)
        and sum(starttype, unitStarttype(unit, starttype))
        }..
591
592

    // Units currently online
593
594
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
595
596
597
598

    =G=

    + sum(unitStarttype(unit, starttype),
599
        + v_startup_LP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
600
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
601
        + v_startup_MIP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
602
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
603
604
605
      ) // END sum(starttype)
;

606
607
608
609
q_offlineAfterShutdown(s_active(s), uft_online(unit, f, t))
    ${  sft(s, f, t)
        and sum(starttype, unitStarttype(unit, starttype))
        }..
610

611
612
613
614
615
    // Number of existing units
    + p_unit(unit, 'unitCount')

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
616
617
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
618
619
        ) // END sum(t_invest)

620
    // Units currently online
621
622
    - v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    - v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
623
624
625

    =G=

626
627
628
629
    + v_shutdown_LP(unit, s, f, t)
        ${ uft_onlineLP(unit, f, t) }
    + v_shutdown_MIP(unit, s, f, t)
        ${ uft_onlineMIP(unit, f, t) }
630
631
;

632
633
*--- Minimum Unit Uptime ------------------------------------------------------

634
635
636
637
q_onlineMinUptime(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and  p_unit(unit, 'minOperationHours')
        } ..
638
639

    // Units currently online
640
641
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
642
643
644
645

    =G=

    // Units that have minimum operation time requirements active
646
647
648
    + sum(unitCounter(unit, counter)${  dt_uptimeUnitCounter(unit, counter)
                                        and t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) // Don't sum over counters that don't point to an active time step
                                        },
649
        + sum(unitStarttype(unit, starttype),
650
            + v_startup_LP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
651
                ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
652
            + v_startup_MIP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
653
                ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
654
            ) // END sum(starttype)
655
656
657
        ) // END sum(counter)

    // Units that have minimum operation time requirements active (aggregated units in the past horizon or if they have an online variable)
Topi Rasku's avatar
Topi Rasku committed
658
    + sum(unitAggregator_unit(unit, unit_),
659
660
661
        + sum(unitCounter(unit, counter)${  dt_uptimeUnitCounter(unit, counter)
                                            and t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) // Don't sum over counters that don't point to an active time step
                                            },
662
            + sum(unitStarttype(unit, starttype),
663
                + v_startup_LP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
664
                    ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
665
                + v_startup_MIP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
666
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
667
668
669
                ) // END sum(starttype)
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
670
671
;

672
673
* --- Cyclic Boundary Conditions for Online State -----------------------------

674
675
676
677
678
q_onlineCyclic(uss_bound(unit, s_, s), m)
    ${  ms(m, s_)
        and ms(m, s)
        and tSolveFirst = mSettings(m, 't_start')
        }..
679
680
681
682

    // Initial value of the state of the unit at the start of the sample
    + sum(mst_start(m, s, t),
        + sum(sft(s, f, t),
Topi Rasku's avatar
Topi Rasku committed
683
684
685
686
            + v_online_LP(unit, s, f+df(f,t+dt(t)), t+dt(t))
                ${uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))}
            + v_online_MIP(unit, s, f+df(f,t+dt(t)), t+dt(t))
                ${uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))}
687
688
689
690
691
692
693
694
695
696
697
698
699
700
            ) // END sum(ft)
        ) // END sum(mst_start)

    =E=

    // State of the unit at the end of the sample
    + sum(mst_end(m, s_, t_),
        + sum(sft(s_, f_, t_),
            + v_online_LP(unit, s_, f_, t_)${uft_onlineLP(unit, f_, t_)}
            + v_online_MIP(unit, s_, f_, t_)${uft_onlineMIP(unit, f_, t_)}
            ) // END sum(ft)
        ) // END sum(mst_end)
;

701
* --- Ramp Constraints --------------------------------------------------------
702

703
704
705
706
q_genRamp(ms(m, s), gnuft_ramp(grid, node, unit, f, t))
    ${  ord(t) > msStart(m, s) + 1
        and msft(m, s, f, t)
        } ..
707

708
709
    + v_genRamp(grid, node, unit, s, f, t)
        * p_stepLength(m, f, t)
710

711
    =E=
712

713
    // Change in generation over the interval: v_gen(t) - v_gen(t-1)
714
    + v_gen(grid, node, unit, s, f, t)
715

716
    // Unit generation at t-1 (except aggregator units right before the aggregation threshold, see next term)
717
    - v_gen(grid, node, unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${not uft_aggregator_first(unit, f, t)}
718
719
    // Unit generation at t-1, aggregator units right before the aggregation threshold
    + sum(unit_${unitAggregator_unit(unit, unit_)},
720
        - v_gen(grid, node, unit_, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))
721
      )${uft_aggregator_first(unit, f, t)}
722
;
723

724
* --- Ramp Up Limits ----------------------------------------------------------
725

726
727
728
729
730
731
732
733
734
735
736
737
q_rampUpLimit(ms(m, s), gnuft_ramp(grid, node, unit, f, t))
    ${  ord(t) > msStart(m, s) + 1
        and msft(m, s, f, t)
        and p_gnu(grid, node, unit, 'maxRampUp')
        and [ sum(restype, nuRescapable(restype, 'up', node, unit))
              or uft_online(unit, f, t)
              or unit_investLP(unit)
              or unit_investMIP(unit)
              ]
        } ..

    // Ramp speed of the unit?
738
    + v_genRamp(grid, node, unit, s, f, t)
739
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
740
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
741
742
743
744
745
        ) // END sum(nuRescapable)
        / p_stepLength(m, f, t)

    =L=

746
    // Ramping capability of units without an online variable
747
748
749
750
751
752
753
754
755
756
757
758
    + (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
            + v_invest_LP(unit, t_)${not uft_onlineLP(unit, f, t) and unit_investLP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
            + v_invest_MIP(unit, t_)${not uft_onlineMIP(unit, f, t) and unit_investMIP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

759
    // Ramping capability of units with an online variable
760
    + (
Topi Rasku's avatar
Topi Rasku committed
761
762
763
764
        + v_online_LP(unit, s, f+df_central(f,t), t)
            ${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, s, f+df_central(f,t), t)
            ${uft_onlineMIP(unit, f, t)}
765
766
767
768
769
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

770
771
772
773
774
775
776
777
778
779
780
781
782
    // Generation units not be able to ramp from zero to min. load within one time interval according to their maxRampUp
    + sum(unitStarttype(unit, starttype)${   uft_online(unit, f, t)
                                             and gnu_output(grid, node, unit)
                                             and not uft_startupTrajectory(unit, f, t)
                                             and ( + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                                                       + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                                                       + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
                                                     ) // END sum(effGroup)
                                                       / p_stepLength(m, f, t)
                                                   - p_gnu(grid, node, unit, 'maxRampUp')
                                                       * 60 > 0
                                                   )
                                             },
783
784
785
786
        + v_startup_LP(unit, starttype, s, f, t)
            ${ uft_onlineLP(unit, f, t) }
        + v_startup_MIP(unit, starttype, s, f, t)
            ${ uft_onlineMIP(unit, f, t) }
787
788
789
790
791
792
793
794
795
796
797
798
      ) // END sum(starttype)
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * (
            + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
              ) // END sum(effGroup)
                / p_stepLength(m, f, t)
            - p_gnu(grid, node, unit, 'maxRampUp')
                * 60   // Unit conversion from [p.u./min] to [p.u./h]
          ) // END * v_startup

799
800
801
802
    // Units in the run-up phase need to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeTot')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
803
804
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
805
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
806
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
807
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
808
                    ]
809
810
811
812
813
814
815
816
                    * [
                        + p_unit(unit, 'rampSpeedToMinLoad')
                        + ( p_gnu(grid, node, unit, 'maxRampUp') - p_unit(unit, 'rampSpeedToMinLoad') )${ not runUpCounter(unit, counter+1) } // Ramp speed adjusted for the last run-up interval
                            * ( p_u_runUpTimeIntervalsCeil(unit) - p_u_runUpTimeIntervals(unit) )
                        ]
                    * 60 // Unit conversion from [p.u./min] into [p.u./h]
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)
817

818
    // Shutdown of consumption units according to maxRampUp
819
820
821
822
823
824
    + [
        + v_shutdown_LP(unit, s, f, t)
            ${uft_onlineLP(unit, f, t) and gnu_input(grid, node, unit)}
        + v_shutdown_MIP(unit, s, f, t)
            ${uft_onlineMIP(unit, f, t) and gnu_input(grid, node, unit)}
        ]
825
        * p_gnu(grid, node, unit, 'unitSizeTot')
826
827
828
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
    // Consumption units not be able to ramp from min. load to zero within one time interval according to their maxRampUp
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
    + [
        + v_shutdown_LP(unit, s, f, t)
            ${ uft_onlineLP(unit, f, t) }
        + v_shutdown_MIP(unit, s, f, t)
            ${ uft_onlineMIP(unit, f, t) }
        ]
        ${  gnu_input(grid, node, unit)
            and ( + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                      + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                      + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
                      ) // END sum(effGroup)
                      / p_stepLength(m, f, t)
                  - p_gnu(grid, node, unit, 'maxRampUp')
                      * 60 > 0
                  )
            }
845
846
847
848
849
850
851
852
853
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * (
            + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
                ) // END sum(effGroup)
                / p_stepLength(m, f, t)
            - p_gnu(grid, node, unit, 'maxRampUp')
                * 60   // Unit conversion from [p.u./min] to [p.u./h]
854
          ) // END * v_shutdown
855
;
856

857
* --- Ramp Down Limits --------------------------------------------------------
858

859
860
861
862
863
864
865
866
867
868
869
870
q_rampDownLimit(ms(m, s), gnuft_ramp(grid, node, unit, f, t))
    ${  ord(t) > msStart(m, s) + 1
        and msft(m, s, f, t)
        and p_gnu(grid, node, unit, 'maxRampDown')
        and [ sum(restype, nuRescapable(restype, 'down', node, unit))
              or uft_online(unit, f, t)
              or unit_investLP(unit)
              or unit_investMIP(unit)
              ]
        } ..

    // Ramp speed of the unit?
871
    + v_genRamp(grid, node, unit, s, f, t)
872
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
873
        + v_reserve(restype, 'down', node, unit, s, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
874
875
876
877
878
        ) // END sum(nuRescapable)
        / p_stepLength(m, f, t)

    =G=

879
    // Ramping capability of units without online variable
880
    - (
Topi Rasku's avatar
Topi Rasku committed
881
882
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )
            ${not uft_online(unit, f, t)}
883
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
Topi Rasku's avatar
Topi Rasku committed
884
885
            + v_invest_LP(unit, t_)
                ${not uft_onlineLP(unit, f, t) and unit_investLP(unit)}
886
                * p_gnu(grid, node, unit, 'unitSizeTot')
Topi Rasku's avatar
Topi Rasku committed
887
888
            + v_invest_MIP(unit, t_)
                ${not uft_onlineMIP(unit, f, t) and unit_investMIP(unit)}
889
890
891
892
893
894
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnu(grid, node, unit, 'maxRampDown')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

895
    // Ramping capability of units that are online
896
    - (
Topi Rasku's avatar
Topi Rasku committed
897
898
899
900
        + v_online_LP(unit, s, f+df_central(f,t), t)
            ${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, s, f+df_central(f,t), t)
            ${uft_onlineMIP(unit, f, t)}
901
902
903
904
905
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnu(grid, node, unit, 'maxRampDown')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

906
    // Shutdown of generation units according to maxRampDown
907
908
909
910
911
912
913
914
915
    - [
        + v_shutdown_LP(unit, s, f, t)
            ${  uft_onlineLP(unit, f, t) }
        + v_shutdown_MIP(unit, s, f, t)
            ${  uft_onlineMIP(unit, f, t) }
        ]
        ${  gnu_output(grid, node, unit)
            and not uft_shutdownTrajectory(unit, f, t)
            }
916
        * p_gnu(grid, node, unit, 'unitSizeTot')
917
918
919
        * p_gnu(grid, node, unit, 'maxRampDown')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
    // Generation units not be able to ramp from min. load to zero within one time interval according to their maxRampDown
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
    - [
        + v_shutdown_LP(unit, s, f, t)
            ${  uft_onlineLP(unit, f, t) }
        + v_shutdown_MIP(unit, s, f, t)
            ${  uft_onlineMIP(unit, f, t) }
        ]
        ${  gnu_output(grid, node, unit)
            and not uft_shutdownTrajectory(unit, f, t)
            and ( + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                      + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                      + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
                    ) // END sum(effGroup)
                    / p_stepLength(m, f, t)
                  - p_gnu(grid, node, unit, 'maxRampDown')
                      * 60 > 0
                )
        }
937
938
939
940
941
942
943
944
945
946
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * (
            + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
                ) // END sum(effGroup)
                / p_stepLength(m, f, t)
            - p_gnu(grid, node, unit, 'maxRampDown')
                * 60   // Unit conversion from [p.u./min] to [p.u./h]
          ) // END * v_shutdown
947

948
949
    // Units in shutdown phase need to keep up with the shutdown ramp rate
    - p_gnu(grid, node, unit, 'unitSizeGen')
950
951
        * [
            + sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
952
953
954
955
956
957
                + [
                    + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                    + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                    ]
958
                    * [
959
960
961
                        + p_gnu(grid, node, unit, 'maxRampDown')${ not shutdownCounter(unit, counter-1) } // Normal maxRampDown limit applies to the time interval when v_shutdown happens, i.e. over the change from online to offline (symmetrical to v_startup)
                        + p_unit(unit, 'rampSpeedFromMinLoad')${ shutdownCounter(unit, counter-1) } // Normal trajectory ramping
                        + ( p_gnu(grid, node, unit, 'maxRampDown') - p_unit(unit, 'rampSpeedFromMinLoad') )${ shutdownCounter(unit, counter-1) and not shutdownCounter(unit, counter-2) } // Ramp speed adjusted for the first shutdown interval
962
963
964
                            * ( p_u_shutdownTimeIntervalsCeil(unit) - p_u_shutdownTimeIntervals(unit) )
                        ]
                ) // END sum(shutdownCounter)
965
            // Units need to be able to shut down after shut down trajectory
966
967
968
969
970
971
972
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_toShutdown(unit, t)), t+dt_toShutdown(unit, t))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_toShutdown(unit, t)), t+dt_toShutdown(unit, t)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_toShutdown(unit, t)), t+dt_toShutdown(unit, t))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_toShutdown(unit, t)), t+dt_toShutdown(unit, t)) }
                ]
                ${uft_shutdownTrajectory(unit, f, t)}
973
974
975
976
977
                * [
                    + p_unit(unit, 'rampSpeedFromMinload')
                    + ( p_gnu(grid, node, unit, 'maxRampDown') - p_unit(unit, 'rampSpeedFromMinLoad') )${ sum(shutdownCounter(unit, counter), 1) = 1 } // Ramp speed adjusted if the unit has only one shutdown interval
                        * ( p_u_shutdownTimeIntervalsCeil(unit) - p_u_shutdownTimeIntervals(unit) )
                    ]
978
979
            ]
        * 60 // Unit conversion from [p.u./min] to [p.u./h]
980
981
982
983
984
985
986
987
988
989
990
991
992

    // Consumption units not be able to ramp from zero to min. load within one time interval according to their maxRampDown
    - sum(unitStarttype(unit, starttype)${   uft_online(unit, f, t)
                                             and gnu_input(grid, node, unit)
                                             and ( + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
                                                       + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
                                                       + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
                                                     ) // END sum(effGroup)
                                                       / p_stepLength(m, f, t)
                                                   - p_gnu(grid, node, unit, 'maxRampDown')
                                                       * 60 > 0
                                                   )
                                             },
993
994
995
996
        + v_startup_LP(unit, starttype, s, f, t)
            ${ uft_onlineLP(unit, f, t) }
        + v_startup_MIP(unit, starttype, s, f, t)
            ${ uft_onlineMIP(unit, f, t) }
997
998
999
1000
      ) // END sum(starttype)
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * (
            + sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation