2d_constraints.gms 155 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
$ontext
This file is part of Backbone.

Backbone is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Backbone is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Backbone.  If not, see <http://www.gnu.org/licenses/>.
$offtext

18

19
* =============================================================================
20
* --- Constraint Equation Definitions -----------------------------------------
21
22
23
24
* =============================================================================

* --- Energy Balance ----------------------------------------------------------

25
26
27
q_balance(gn(grid, node), msft(m, s, f, t)) // Energy/power balance dynamics solved using implicit Euler discretization
    ${  not p_gn(grid, node, 'boundAll')
        } ..
28
29
30
31

    // The left side of the equation is the change in the state (will be zero if the node doesn't have a state)
    + p_gn(grid, node, 'energyStoredPerUnitOfState')${gn_state(grid, node)} // Unit conversion between v_state of a particular node and energy variables (defaults to 1, but can have node based values if e.g. v_state is in Kelvins and each node has a different heat storage capacity)
        * [
32
33
            + v_state(grid, node, s, f+df_central(f,t), t)                   // The difference between current
            - v_state(grid, node, s+ds_state(grid,node,s,t), f+df(f,t+dt(t)), t+dt(t))       // ... and previous state of the node
34
35
36
37
38
39
40
41
            ]

    =E=

    // The right side of the equation contains all the changes converted to energy terms
    + p_stepLength(m, f, t) // Multiply with the length of the timestep to convert power into energy
        * (
            // Self discharge out of the model boundaries
42
            - p_gn(grid, node, 'selfDischargeLoss')${ gn_state(grid, node) }
43
                * v_state(grid, node, s, f+df_central(f,t), t) // The current state of the node
44
45

            // Energy diffusion from this node to neighbouring nodes
46
            - sum(gnn_state(grid, node, to_node),
47
                + p_gnn(grid, node, to_node, 'diffCoeff')
48
                    * v_state(grid, node, s, f+df_central(f,t), t)
49
50
51
                ) // END sum(to_node)

            // Energy diffusion from neighbouring nodes to this node
52
            + sum(gnn_state(grid, from_node, node),
53
                + p_gnn(grid, from_node, node, 'diffCoeff')
54
                    * v_state(grid, from_node, s, f+df_central(f,t), t) // Incoming diffusion based on the state of the neighbouring node
55
56
57
                ) // END sum(from_node)

            // Controlled energy transfer, applies when the current node is on the left side of the connection
58
            - sum(gn2n_directional(grid, node, node_),
59
                + (1 - p_gnn(grid, node, node_, 'transferLoss')) // Reduce transfer losses
60
                    * v_transfer(grid, node, node_, s, f, t)
61
                + p_gnn(grid, node, node_, 'transferLoss') // Add transfer losses back if transfer is from this node to another node
62
                    * v_transferRightward(grid, node, node_, s, f, t)
63
64
65
                ) // END sum(node_)

            // Controlled energy transfer, applies when the current node is on the right side of the connection
66
            + sum(gn2n_directional(grid, node_, node),
67
                + v_transfer(grid, node_, node, s, f, t)
68
                - p_gnn(grid, node_, node, 'transferLoss') // Reduce transfer losses if transfer is from another node to this node
69
                    * v_transferRightward(grid, node_, node, s, f, t)
70
71
72
73
                ) // END sum(node_)

            // Interactions between the node and its units
            + sum(gnuft(grid, node, unit, f, t),
74
                + v_gen(grid, node, unit, s, f, t) // Unit energy generation and consumption
75
                )
76
77

            // Spilling energy out of the endogenous grids in the model
78
            - v_spill(grid, node, s, f, t)${node_spill(node)}
79
80

            // Power inflow and outflow timeseries to/from the node
81
            + ts_influx_(grid, node, f, t, s)   // Incoming (positive) and outgoing (negative) absolute value time series
82
83

            // Dummy generation variables, for feasibility purposes
84
85
            + vq_gen('increase', grid, node, s, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
            - vq_gen('decrease', grid, node, s, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
86
    ) // END * p_stepLength
87
;
88
89

* --- Reserve Demand ----------------------------------------------------------
90
91
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.
92

93
q_resDemand(restypeDirectionNode(restype, up_down, node), sft(s, f, t))
94
95
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
96
                  and sft_realized(s, f, t)]
97
        } ..
98

99
100
    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, up_down, node, unit)},
101
        + v_reserve(restype, up_down, node, unit, s, f+df_reserves(node, restype, f, t), t)
102
103
104
105
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
106
107
        ) // END sum(nuft)

108
    // Reserve provision from other reserve categories when they can be shared
109
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, up_down, restype)},
110
        + v_reserve(restype_, up_down, node, unit, s, f+df_reserves(node, restype_, f, t), t)
111
            * p_nuRes2Res(node, unit, restype_, up_down, restype)
112
113
114
115
116
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
117
118
        ) // END sum(nuft)

119
    // Reserve provision to this node via transfer links
120
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},
121
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
122
            * v_resTransferRightward(restype, up_down, node_, node, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
123
        ) // END sum(gn2n_directional)
124
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},
125
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
126
            * v_resTransferLeftward(restype, up_down, node, node_, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
127
128
129
130
131
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves
132
    + ts_reserveDemand(restype, up_down, node, f, t)${p_nReserves(node, restype, 'use_time_series')}
133
134
    + p_nReserves(node, restype, up_down)${not p_nReserves(node, restype, 'use_time_series')}

135
136
    // Reserve demand increase because of units
    + sum(nuft(node, unit, f, t)${p_nuReserves(node, unit, restype, 'reserve_increase_ratio')}, // Could be better to have 'reserve_increase_ratio' separately for up and down directions
137
        + sum(gnu(grid, node, unit), v_gen(grid, node, unit, s, f, t)) // Reserve sets and variables are currently lacking the grid dimension...
138
139
140
            * p_nuReserves(node, unit, restype, 'reserve_increase_ratio')
        ) // END sum(nuft)

141
    // Reserve provisions to another nodes via transfer links
142
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
143
        + v_resTransferRightward(restype, up_down, node, node_, s, f+df_reserves(node, restype, f, t), t)
144
        ) // END sum(gn2n_directional)
145
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
146
        + v_resTransferLeftward(restype, up_down, node_, node, s, f+df_reserves(node, restype, f, t), t)
147
148
149
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
150
151
    - vq_resDemand(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
152
;
153

154
155
156
157
* --- N-1 Reserve Demand ----------------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

158
q_resDemandLargestInfeedUnit(grid, restypeDirectionNode(restype, 'up', node), unit_fail(unit_), sft(s, f, t))
159
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
160
        and gn(grid, node)
161
162
163
        and not [ restypeReleasedForRealization(restype)
            and ft_realized(f, t)
            ]
164
        and p_nuReserves(node, unit_, restype, 'portion_of_infeed_to_reserve')
165
        } ..
166

167
168
    // Reserve provision by capable units on this node excluding the failing one
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'up', node, unit) and (ord(unit_) ne ord(unit))},
169
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
170
171
172
173
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
174
175
176
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
177
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'up', restype)},
178
        + v_reserve(restype_, 'up', node, unit, s, f+df_reserves(node, restype_, f, t), t)
179
            * p_nuRes2Res(node, unit, restype_, 'up', restype)
180
181
182
183
184
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
185
186
187
188
189
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node_, node)},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
190
            * v_resTransferRightward(restype, 'up', node_, node, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
191
192
193
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node_, node)},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
194
            * v_resTransferLeftward(restype, 'up', node, node_, s, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
195
196
197
198
        ) // END sum(gn2n_directional)

    =G=

199
    // Demand for reserves due to a large unit that could fail
200
    + v_gen(grid,node,unit_,s,f,t) * p_nuReserves(node, unit_, restype, 'portion_of_infeed_to_reserve')
201
202

    // Reserve provisions to another nodes via transfer links
203
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
204
        + v_resTransferRightward(restype, 'up', node, node_, s, f+df_reserves(node, restype, f, t), t)
205
        ) // END sum(gn2n_directional)
206
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
207
        + v_resTransferLeftward(restype, 'up', node_, node, s, f+df_reserves(node, restype, f, t), t)
208
209
210
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
211
212
    - vq_resDemand(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
213
;
214

215
216
217
218
219
q_rateOfChangeOfFrequencyUnit(group, unit_fail(unit_), sft(s, f, t))
    ${  p_groupPolicy(group, 'defaultFrequency')
        and p_groupPolicy(group, 'ROCOF')
        and uft(unit_, f, t)
        and sum(gnu_output(grid, node, unit_)${gnGroup(grid, node, group)}, 1) // only units with output capacity 'inside the group'
220
221
        } ..

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    // Kinetic/rotational energy in the system
    + p_groupPolicy(group, 'ROCOF')*2
        * [
            + sum(gnu_output(grid, node, unit)${   ord(unit) ne ord(unit_)
                                                   and gnGroup(grid, node, group)
                                                   and gnuft(grid, node, unit, f, t)
                                                   },
                + p_gnu(grid, node, unit, 'inertia')
                    * p_gnu(grid ,node, unit, 'unitSizeMVA')
                    * [
                        + v_online_LP(unit, s, f+df_central(f,t), t)
                            ${uft_onlineLP(unit, f, t)}
                        + v_online_MIP(unit, s, f+df_central(f,t), t)
                            ${uft_onlineMIP(unit, f, t)}
                        + v_gen(grid, node, unit, s, f, t)${not uft_online(unit, f, t)}
                            / p_gnu(grid, node, unit, 'unitSizeGen')
                        ] // * p_gnu
                ) // END sum(gnu_output)
            ] // END * p_groupPolicy
241
242
243

    =G=

244
245
246
247
248
249
    // Demand for kinetic/rotational energy due to a large unit that could fail
    + p_groupPolicy(group, 'defaultFrequency')
        * sum(gnu_output(grid, node, unit_)${   gnGroup(grid, node, group)
                                                },
            + v_gen(grid, node, unit_ , s, f, t)
            ) // END sum(gnu_output)
250
;
251
252
253
254
255
256
257
258
259

q_rateOfChangeOfFrequencyTransfer(group, gn(grid, node_), node_fail, sft(s, f, t))
    ${  p_groupPolicy(group, 'defaultFrequency')
        and p_groupPolicy(group, 'ROCOF')
        and gnGroup(grid, node_, group) // only interconnectors where one end is 'inside the group'
        and not gnGroup(grid, node_fail, group) // and the other end is 'outside the group'
        and [ p_gnn(grid, node_, node_fail, 'portion_of_transfer_to_reserve')
              or p_gnn(grid, node_fail, node_, 'portion_of_transfer_to_reserve')
              ]
260
261
        } ..

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    // Kinetic/rotational energy in the system
    + p_groupPolicy(group, 'ROCOF')*2
        * [
            + sum(gnu_output(grid, node, unit)${   gnGroup(grid, node, group)
                                                   and gnuft(grid, node, unit, f, t)
                                                   },
                + p_gnu(grid, node, unit, 'inertia')
                    * p_gnu(grid ,node, unit, 'unitSizeMVA')
                    * [
                        + v_online_LP(unit, s, f+df_central(f,t), t)
                            ${uft_onlineLP(unit, f, t)}
                        + v_online_MIP(unit, s, f+df_central(f,t), t)
                            ${uft_onlineMIP(unit, f, t)}
                        + v_gen(grid, node, unit, s, f, t)${not uft_online(unit, f, t)}
                            / p_gnu(grid, node, unit, 'unitSizeGen')
                        ] // * p_gnu
                ) // END sum(gnu_output)
            ] // END * p_groupPolicy
280
281
282

    =G=

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    // Demand for kinetic/rotational energy due to a large interconnector that could fail
    + p_groupPolicy(group, 'defaultFrequency')
        * [
            // Loss of import due to potential interconnector failures
            + p_gnn(grid, node_fail, node_, 'portion_of_transfer_to_reserve')
                * v_transferRightward(grid, node_fail, node_, s, f, t)
                * (1 - p_gnn(grid, node_fail, node_, 'transferLoss') )
            + p_gnn(grid, node_, node_fail, 'portion_of_transfer_to_reserve')
                * v_transferLeftward(grid, node_, node_fail, s, f, t)
                * (1 - p_gnn(grid, node_, node_fail, 'transferLoss') )
            // Loss of export due to potential interconnector failures
            + p_gnn(grid, node_fail, node_, 'portion_of_transfer_to_reserve')
                * v_transferLeftward(grid, node_fail, node_, s, f, t)
            + p_gnn(grid, node_, node_fail, 'portion_of_transfer_to_reserve')
                * v_transferRightward(grid, node_, node_fail, s, f, t)
            ] // END * p_groupPolicy
299
;
300

301
* --- N-1 Upward reserve demand due to a possibility that an interconnector that is transferring power to the node fails -------------------------------------------------
302
303
304
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

ran li's avatar
ran li committed
305
q_resDemandLargestInfeedTransfer(grid, restypeDirectionNode(restype, 'up', node), node_fail, sft(s, f, t))
306
307
308
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
                  and sft_realized(s, f, t)]
309
310
311
        and [ p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
              or p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve')
              ]
ran li's avatar
ran li committed
312
        and p_nReserves(node, restype, 'LossOfTrans')
313
314
315
        } ..

    // Reserve provision by capable units on this node
ran li's avatar
ran li committed
316
317
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'up', node, unit)},
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
318
319
320
321
322
323
324
325
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'up', restype)},
ran li's avatar
ran li committed
326
327
        + v_reserve(restype_, 'up', node, unit, s, f+df_reserves(node, restype_, f, t), t)
            * p_nuRes2Res(node, unit, restype_, 'up', restype)
328
329
330
331
332
333
334
335
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
336
    // SHOULD THE node_fail BE EXCLUDED?
ran li's avatar
ran li committed
337
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node_, node)},
338
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
ran li's avatar
ran li committed
339
            * v_resTransferRightward(restype, 'up', node_, node, s, f+df_reserves(node_, restype, f, t), t)
340
            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
341
        ) // END sum(gn2n_directional)
ran li's avatar
ran li committed
342
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node_, node)},
343
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
ran li's avatar
ran li committed
344
            * v_resTransferLeftward(restype, 'up', node, node_, s, f+df_reserves(node_, restype, f, t), t)
345
            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
346
347
348
349
        ) // END sum(gn2n_directional)

    =G=

350
    // Upward Demand for reserves due to potential interconnector failures
ran li's avatar
ran li committed
351
    + p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve')
352
        * v_transferRightward(grid, node_fail, node, s, f, t)
353
    + p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
ran li's avatar
ran li committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        * v_transferLeftward(grid, node, node_fail, s, f, t)

    // Reserve provisions to another nodes via transfer links
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_)},
          // Reserve transfers to other nodes increase the reserve need of the present node
        + v_resTransferRightward(restype, 'up', node, node_, s, f+df_reserves(node, restype, f, t), t)
            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'up', node, node_)},
          // Reserve transfers to other nodes increase the reserve need of the present node
        + v_resTransferLeftward(restype, 'up', node_, node, s, f+df_reserves(node, restype, f, t), t)
            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
    - vq_resDemand(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'up', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
;

* --- N-1 Downward reserve demand due to a possibility that an interconnector that is transferring power to the node fails -------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

q_resDemandLargestInfeedTransfer2(grid, restypeDirectionNode(restype, 'down', node), node_fail, sft(s, f, t))
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
                  and sft_realized(s, f, t)]
381
382
383
        and [ p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
              or p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve')
              ]
ran li's avatar
ran li committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        and p_nReserves(node, restype, 'LossOfTrans')
        } ..

    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, 'down', node, unit)},
        + v_reserve(restype, 'down', node, unit, s, f+df_reserves(node, restype, f, t), t)
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision from other reserve categories when they can be shared
    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'down', restype)},
        + v_reserve(restype_, 'down', node, unit, s, f+df_reserves(node, restype_, f, t), t)
            * p_nuRes2Res(node, unit, restype_, 'down', restype)
            * [ // Account for reliability of reserves
                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
                ] // END * v_reserve
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
    // SHOULD THE node_fail BE EXCLUDED?
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'down', node_, node)},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
            * v_resTransferRightward(restype, 'down', node_, node, s, f+df_reserves(node_, restype, f, t), t)
            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'down', node_, node)},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
            * v_resTransferLeftward(restype, 'down', node, node_, s, f+df_reserves(node_, restype, f, t), t)
            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves due to potential interconnector failures
    + p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve')
ran li's avatar
ran li committed
424
        * v_transferLeftward(grid, node_fail, node, s, f, t)
425
    + p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
ran li's avatar
ran li committed
426
        * v_transferRightward(grid, node, node_fail, s, f, t)
427
428

    // Reserve provisions to another nodes via transfer links
ran li's avatar
ran li committed
429
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, 'up', node, node_)},
430
          // Reserve transfers to other nodes increase the reserve need of the present node
ran li's avatar
ran li committed
431
        + v_resTransferRightward(restype, 'down', node, node_, s, f+df_reserves(node, restype, f, t), t)
432
433
            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)
ran li's avatar
ran li committed
434
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, 'down', node, node_)},
435
          // Reserve transfers to other nodes increase the reserve need of the present node
ran li's avatar
ran li committed
436
        + v_resTransferLeftward(restype, 'down', node_, node, s, f+df_reserves(node, restype, f, t), t)
437
438
439
440
            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
ran li's avatar
ran li committed
441
442
    - vq_resDemand(restype, 'down', node, s, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, 'down', node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
443
;
444

ran li's avatar
ran li committed
445
446
447
448
449
450
451
452
* --- N-1 Upward reserve demand due to a possibility that an interconnector that is transferring power to the node fails -------------------------------------------------
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.

*q_resDemandLargestInfeedTransfer(grid, restypeDirectionNode(restype, up_down, node), node_fail, sft(s, f, t))
*    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
*        and not [ restypeReleasedForRealization(restype)
*                  and sft_realized(s, f, t)]
453
*        and (p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve') and p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve'))
ran li's avatar
ran li committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
*        and p_nReserves3D(node, restype, up_down, 'LossOfTrans')
*        } ..
*
*    // Reserve provision by capable units on this node
*    + sum(nuft(node, unit, f, t)${nuRescapable(restype, up_down, node, unit)},
*        + v_reserve(restype, up_down, node, unit, s, f+df_reserves(node, restype, f, t), t)
*            * [ // Account for reliability of reserves
*                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
*                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
*                ] // END * v_reserve
*        ) // END sum(nuft)
*
*    // Reserve provision from other reserve categories when they can be shared
*    + sum((nuft(node, unit, f, t), restype_)${p_nuRes2Res(node, unit, restype_, 'up', restype)},
*        + v_reserve(restype_, up_down, node, unit, s, f+df_reserves(node, restype_, f, t), t)
*            * p_nuRes2Res(node, unit, restype_, up_down, restype)
*            * [ // Account for reliability of reserves
*                + 1${sft_realized(s, f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
*                + p_nuReserves(node, unit, restype, 'reserveReliability')${not sft_realized(s, f+df_reserves(node, restype, f, t), t)}
*                    * p_nuReserves(node, unit, restype_, 'reserveReliability')
*                ] // END * v_reserve
*        ) // END sum(nuft)
*
*    // Reserve provision to this node via transfer links
*    // SHOULD THE node_fail BE EXCLUDED?
*    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},
*        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
*            * v_resTransferRightward(restype, up_down, node_, node, s, f+df_reserves(node_, restype, f, t), t)
*            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
*        ) // END sum(gn2n_directional)
*    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},
*        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
*            * v_resTransferLeftward(restype, up_down, node, node_, s, f+df_reserves(node_, restype, f, t), t)
*            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
*        ) // END sum(gn2n_directional)
*
*    =G=
*
*    // Upward Demand for reserves due to potential interconnector failures
*    [+ p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve')
*        * v_transferRightward(grid, node_fail, node, s, f, t)
*    + p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
*        * v_transferLeftward(grid, node, node_fail, s, f, t)]$(up_down eq 'up')
*    //Downward Demand for reserves due to potential interconnector failures
*    [+ p_gnn(grid, node_fail, node, 'portion_of_transfer_to_reserve')
*        * v_transferLeftward(grid, node_fail, node, s, f, t)
*    + p_gnn(grid, node, node_fail, 'portion_of_transfer_to_reserve')
*        * v_transferRightward(grid, node, node_fail, s, f, t)]$(up_down eq 'down')
*
*    // Reserve provisions to another nodes via transfer links
*    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node, node_)},
*          // Reserve transfers to other nodes increase the reserve need of the present node
*        + v_resTransferRightward(restype, up_down, node, node_, s, f+df_reserves(node, restype, f, t), t)
*            * [1$(not node_(node_fail)) + p_gnn(grid, node, node_, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
*        ) // END sum(gn2n_directional)
*    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node, node_)},
*          // Reserve transfers to other nodes increase the reserve need of the present node
*        + v_resTransferLeftward(restype, up_down, node_, node, s, f+df_reserves(node, restype, f, t), t)
*            * [1$(not node_(node_fail)) + p_gnn(grid, node_, node, 'portion_of_transfer_to_reserve')$(node_(node_fail))]
*        ) // END sum(gn2n_directional)
*
*    // Reserve demand feasibility dummy variables
*    - vq_resDemand(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)
*    - vq_resMissing(restype, up_down, node, s, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
*;

520
521
* --- Maximum Downward Capacity -----------------------------------------------

522
q_maxDownward(gnu(grid, node, unit), msft(m, s, f, t))
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    ${  gnuft(grid, node, unit, f, t)
        and {
            [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
                and sum(restype, nuRescapable(restype, 'down', node, unit)) // downward reserves
                ]
            // NOTE!!! Could be better to form a gnuft_reserves subset?
            or [ // the unit has an online variable
                uft_online(unit, f, t)
                and [
                    (unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeGen')) // generators with a min. load
                    or p_gnu(grid, node, unit, 'maxCons') // or consuming units with an online variable
                    ]
                ] // END or
            or [ // consuming units with investment possibility
                gnu_input(grid, node, unit)
                and [unit_investLP(unit) or unit_investMIP(unit)]
                ]
        }} ..

542
    // Energy generation/consumption
543
    + v_gen(grid, node, unit, s, f, t)
544
545

    // Considering output constraints (e.g. cV line)
546
547
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
548
            * v_gen(grid_output, node_, unit, s, f, t)
549
550
551
        ) // END sum(gngnu_constrainedOutputRatio)

    // Downward reserve participation
552
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
553
        + v_reserve(restype, 'down', node, unit, s, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
554
555
556
557
558
559
        ) // END sum(nuRescapable)

    =G= // Must be greater than minimum load or maximum consumption  (units with min-load and both generation and consumption are not allowed)

    // Generation units, greater than minload
    + p_gnu(grid, node, unit, 'unitSizeGen')
560
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
561
562
563
564
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [ // Online variables should only be generated for units with restrictions
565
566
            + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f+df_central(f,t), t)} // LP online variant
            + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f+df_central(f,t), t)} // MIP online variant
567
568
            ] // END v_online

569
570
571
572
    // Units in run-up phase neet to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
573
574
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
575
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
576
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
577
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
578
                    ]
579
                    * p_uCounter_runUpMin(unit, counter)
580
581
582
583
584
585
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)

    // Units in shutdown phase need to keep up with the shutdown rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
586
587
588
589
590
591
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                ]
592
                * p_uCounter_shutdownMin(unit, counter)
593
            ) // END sum(shutdownCounter)
594

595
596
597
598
599
    // Consuming units, greater than maxCons
    // Available capacity restrictions
    - p_unit(unit, 'availability')
        * [
            // Capacity factors for flow units
600
            + sum(flowUnit(flow, unit),
601
                + ts_cf_(flow, node, f, t, s)
602
603
604
605
606
607
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxCons')${not uft_online(unit, f, t)} // Use initial maximum if no online variables
608
609
610
611
            // !!! TEMPORARY SOLUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
            + [
                + p_gnu(grid, node, unit, 'unitSizeCons')
                + p_gnu(grid, node, unit, 'maxCons')${not p_gnu(grid, node, unit, 'unitSizeCons') > 0}
612
                    / ( p_unit(unit, 'unitCount') + 1${not p_unit(unit, 'unitCount') > 0} )
613
614
                ]
            // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
615
                * [
616
                    // Capacity online
617
618
                    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
                    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
619
620
621
622
623
624
625
626

                    // Investments to additional non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f, t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)} // NOTE! v_invest_LP also for consuming units is positive
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)} // NOTE! v_invest_MIP also for consuming units is positive
                        ) // END sum(t_invest)
627
628
                    ] // END * p_gnu(unitSizeCons)
            ] // END * p_unit(availability)
629
;
630
631
632

* --- Maximum Upwards Capacity ------------------------------------------------

633
q_maxUpward(gnu(grid, node, unit), msft(m, s, f, t))
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
    ${  gnuft(grid, node, unit, f, t)
        and {
            [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
                and sum(restype, nuRescapable(restype, 'up', node, unit)) // upward reserves
                ]
            or [
                uft_online(unit, f, t) // or the unit has an online variable
                and [
                    [unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeCons')] // consuming units with min_load
                    or [p_gnu(grid, node, unit, 'maxGen')]                          // generators with an online variable
                    ]
                ]
            or [
                gnu_output(grid, node, unit) // generators with investment possibility
                and (unit_investLP(unit) or unit_investMIP(unit))
                ]
        }}..

652
    // Energy generation/consumption
653
    + v_gen(grid, node, unit, s, f, t)
654
655
656
657

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
658
            * v_gen(grid_output, node_, unit, s, f, t)
659
660
661
        ) // END sum(gngnu_constrainedOutputRatio)

    // Upwards reserve participation
662
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
663
        + v_reserve(restype, 'up', node, unit, s, f+df_reserves(node, restype, f, t), t)
664
665
666
667
668
        ) // END sum(nuRescapable)

    =L= // must be less than available/online capacity

    // Consuming units
669
    - p_gnu(grid, node, unit, 'unitSizeCons')
670
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
671
672
673
674
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [
675
676
            + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
            + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
677
678
679
680
681
682
683
            ] // END * p_gnu(unitSizeCons)

    // Generation units
    // Available capacity restrictions
    + p_unit(unit, 'availability') // Generation units are restricted by their (available) capacity
        * [
            // Capacity factor for flow units
684
            + sum(flowUnit(flow, unit),
685
                + ts_cf_(flow, node, f, t, s)
686
687
688
689
690
691
692
693
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxGen')${not uft_online(unit, f, t)} // Use initial maxGen if no online variables
            + p_gnu(grid, node, unit, 'unitSizeGen')
                * [
694
                    // Capacity online
695
696
                    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f ,t)}
                    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
697
698
699
700
701
702
703
704

                    // Investments to non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f ,t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)}
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                        ) // END sum(t_invest)
705
706
                    ] // END * p_gnu(unitSizeGen)
            ] // END * p_unit(availability)
707

708
709
710
711
    // Units in run-up phase neet to keep up with the run-up rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(unitStarttype(unit, starttype)${uft_startupTrajectory(unit, f, t)},
            sum(runUpCounter(unit, counter)${t_active(t+dt_trajectory(counter))}, // Sum over the run-up intervals
712
713
                + [
                    + v_startup_LP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
714
                        ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
715
                    + v_startup_MIP(unit, starttype, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
716
                        ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
717
                    ]
718
                    * p_uCounter_runUpMax(unit, counter)
719
720
721
722
723
724
                ) // END sum(runUpCounter)
            ) // END sum(unitStarttype)

    // Units in shutdown phase need to keep up with the shutdown rate
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(shutdownCounter(unit, counter)${t_active(t+dt_trajectory(counter)) and uft_shutdownTrajectory(unit, f, t)}, // Sum over the shutdown intervals
725
726
727
728
729
730
            + [
                + v_shutdown_LP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineLP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                + v_shutdown_MIP(unit, s, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter))
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f, t+dt_trajectory(counter)), t+dt_trajectory(counter)) }
                ]
731
                * p_uCounter_shutdownMax(unit, counter)
732
            ) // END sum(shutdownCounter)
733
;
734

735
736
* --- Reserve Provision of Units with Investments -----------------------------

737
738
739
740
741
742
743
q_reserveProvision(nuRescapable(restypeDirectionNode(restype, up_down, node), unit), sft(s, f, t))
    ${  ord(t) <= tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and nuft(node, unit, f, t)
        and (unit_investLP(unit) or unit_investMIP(unit))
        and not ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)
        } ..

744
    + v_reserve(restype, up_down, node, unit, s, f+df_reserves(node, restype, f, t), t)
745
746
747
748
749
750
751
752
753
754
755
756
757

    =L=

    + p_nuReserves(node, unit, restype, up_down)
        * [
            + sum(grid, p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )  // Reserve sets and variables are currently lacking the grid dimension...
            + sum(t_invest(t_)${ ord(t_)<=ord(t) },
                + v_invest_LP(unit, t_)${unit_investLP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                ) // END sum(t_)
            ]
758
759
760
761
        * p_unit(unit, 'availability') // Taking into account availability...
        * [
            // ... and capacity factor for flow units
            + sum(flowUnit(flow, unit),
762
                + ts_cf_(flow, node, f, t, s)
763
764
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
765
766
767
            ] // How to consider reserveReliability in the case of investments when we typically only have "realized" time steps?
;

768
769
* --- Unit Startup and Shutdown -----------------------------------------------

770
771
772
773
q_startshut(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        }..

774
    // Units currently online
775
776
    + v_online_LP (unit, s, f+df_central(f,t), t)${uft_onlineLP (unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
777
778

    // Units previously online
779
    // The same units
780
    - v_online_LP (unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
781
                                                             and not uft_aggregator_first(unit, f, t) } // This reaches to tFirstSolve when dt = -1
782
    - v_online_MIP(unit, s+ds(s,t), f+df(f,t+dt(t)), t+dt(t))${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
783
784
785
786
                                                             and not uft_aggregator_first(unit, f, t) }

    // Aggregated units just before they are turned into aggregator units
    - sum(unit_${unitAggregator_unit(unit, unit_)},
787
788
        + v_online_LP (unit_, s, f+df(f,t+dt(t)), t+dt(t))${uft_onlineLP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
        + v_online_MIP(unit_, s, f+df(f,t+dt(t)), t+dt(t))${uft_onlineMIP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
789
        )${uft_aggregator_first(unit, f, t)} // END sum(unit_)
790

791
792
    =E=

793
    // Unit startup and shutdown
794

795
    // Add startup of units dt_toStartup before the current t (no start-ups for aggregator units before they become active)
796
    + sum(unitStarttype(unit, starttype),
797
        + v_startup_LP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
798
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
799
        + v_startup_MIP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
800
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
801
        )${not [unit_aggregator(unit) and ord(t) + dt_toStartup(unit, t) <= tSolveFirst + p_unit(unit, 'lastStepNotAggregated')]} // END sum(starttype)
802

803
804
805
806
    // NOTE! According to 3d_setVariableLimits,
    // cannot start a unit if the time when the unit would become online is outside
    // the horizon when the unit has an online variable
    // --> no need to add start-ups of aggregated units to aggregator units
807

808
    // Shutdown of units at time t
809
810
811
812
    - v_shutdown_LP(unit, s, f, t)
        ${ uft_onlineLP(unit, f, t) }
    - v_shutdown_MIP(unit, s, f, t)
        ${ uft_onlineMIP(unit, f, t) }
813
;
814

815
*--- Startup Type -------------------------------------------------------------
816
// !!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
817
818
819
// This formulation doesn't work as intended when unitCount > 1, as one recent
// shutdown allows for multiple hot/warm startups on subsequent time steps.
// Pending changes.
820

821
822
823
824
q_startuptype(ms(m, s), starttypeConstrained(starttype), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and unitStarttype(unit, starttype)
        } ..
825
826

    // Startup type
827
828
    + v_startup_LP(unit, starttype, s, f, t)${ uft_onlineLP(unit, f, t) }
    + v_startup_MIP(unit, starttype, s, f, t)${ uft_onlineMIP(unit, f, t) }
829
830
831
832

    =L=

    // Subunit shutdowns within special startup timeframe
833
834
835
836
837
838
839
    + sum(unitCounter(unit, counter)${  dt_starttypeUnitCounter(starttype, unit, counter)
                                        and t_active(t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
                                        },
        + v_shutdown_LP(unit, s, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)) }
        + v_shutdown_MIP(unit, s, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)) }
840
841
842
        ) // END sum(counter)

    // NOTE: for aggregator units, shutdowns for aggregated units are not considered
843
;
844

845

846
847
*--- Online Limits with Startup Type Constraints and Investments --------------

848
849
850
851
852
853
854
855
856
q_onlineLimit(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and {
            p_unit(unit, 'minShutdownHours')
            or p_u_runUpTimeIntervals(unit)
            or unit_investLP(unit)
            or unit_investMIP(unit)
        }} ..

857
    // Online variables
858
859
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f ,t)}
860
861
862
863
864
865

    =L=

    // Number of existing units
    + p_unit(unit, 'unitCount')

866
    // Number of units unable to become online due to restrictions
867
868
869
870
871
872
873
    - sum(unitCounter(unit, counter)${  dt_downtimeUnitCounter(unit, counter)
                                        and t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                        },
        + v_shutdown_LP(unit, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
        + v_shutdown_MIP(unit, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
874
875
876
        ) // END sum(counter)

    // Number of units unable to become online due to restrictions (aggregated units in the past horizon or if they have an online variable)
877
    - sum(unitAggregator_unit(unit, unit_),
878
879
880
881
882
883
884
        + sum(unitCounter(unit, counter)${  dt_downtimeUnitCounter(unit, counter)
                                            and t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))
                                            },
            + v_shutdown_LP(unit_, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                ${ uft_onlineLP_withPrevious(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
            + v_shutdown_MIP(unit_, s, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                ${ uft_onlineMIP_withPrevious(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1)) }
885
886
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
887
888
889

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
890
891
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
892
893
894
        ) // END sum(t_invest)
;

895
896
897
898
*--- Both q_offlineAfterShutdown and q_onlineOnStartup work when there is only one unit.
*    These equations prohibit single units turning on and off at the same time step.
*    Unfortunately there seems to be no way to prohibit this when unit count is > 1.
*    (it shouldn't be worthwhile anyway if there is a startup cost, but it can fall within the solution gap).
899
900
901
902
q_onlineOnStartUp(s_active(s), uft_online(unit, f, t))
    ${  sft(s, f, t)
        and sum(starttype, unitStarttype(unit, starttype))
        }..
903
904

    // Units currently online
905
906
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
907
908
909
910

    =G=

    + sum(unitStarttype(unit, starttype),
911
        + v_startup_LP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
912
            ${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
913
        + v_startup_MIP(unit, starttype, s, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
914
            ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t)) }
915
916
917
      ) // END sum(starttype)
;

918
919
920
921
q_offlineAfterShutdown(s_active(s), uft_online(unit, f, t))
    ${  sft(s, f, t)
        and sum(starttype, unitStarttype(unit, starttype))
        }..
922

923
924
925
926
927
    // Number of existing units
    + p_unit(unit, 'unitCount')

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
928
929
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
930
931
        ) // END sum(t_invest)

932
    // Units currently online
933
934
    - v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    - v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
935
936
937

    =G=

938
939
940
941
    + v_shutdown_LP(unit, s, f, t)
        ${ uft_onlineLP(unit, f, t) }
    + v_shutdown_MIP(unit, s, f, t)
        ${ uft_onlineMIP(unit, f, t) }
942
943
;

944
945
*--- Minimum Unit Uptime ------------------------------------------------------

946
947
948
949
q_onlineMinUptime(ms(m, s), uft_online(unit, f, t))
    ${  msft(m, s, f, t)
        and  p_unit(unit, 'minOperationHours')
        } ..
950
951

    // Units currently online
952
953
    + v_online_LP(unit, s, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, s, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
954
955
956
957

    =G=

    // Units that have minimum operation time requirements active
958
959
960
    + sum(unitCounter(unit, counter)${  dt_uptimeUnitCounter(unit, counter)
                                        and t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) // Don't sum over counters that don't point to an active time step
                                        },
961
        + sum(unitStarttype(unit, starttype),
962
            + v_startup_LP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
963
                ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
964
            + v_startup_MIP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
965
                ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
966
            ) // END sum(starttype)
967
968
969
        ) // END sum(counter)

    // Units that have minimum operation time requirements active (aggregated units in the past horizon or if they have an online variable)
Topi Rasku's avatar
Topi Rasku committed
970
    + sum(unitAggregator_unit(unit, unit_),
971
972
973
        + sum(unitCounter(unit, counter)${  dt_uptimeUnitCounter(unit, counter)
                                            and t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) // Don't sum over counters that don't point to an active time step
                                            },
974
            + sum(unitStarttype(unit, starttype),
975
                + v_startup_LP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
976
                    ${ uft_onlineLP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
977
                + v_startup_MIP(unit, starttype, s, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
978
                    ${ uft_onlineMIP_withPrevious(unit, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)) }
979
980
981
                ) // END sum(starttype)
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
982
983
;

984
985
* --- Cyclic Boundary Conditions for Online State -----------------------------

986
987
988
989
990
q_onlineCyclic(uss_bound(unit, s_, s), m)
    ${  ms(m, s_)
        and ms(m, s)
        and tSolveFirst = mSettings(m, 't_start')
        }..
991
992
993
994

    // Initial value of the state of the unit at the start of the sample
    + sum(mst_start(m, s, t),
        + sum(sft(s, f, t),
Topi Rasku's avatar
Topi Rasku committed
995
996
997
998
            + v_online_LP(unit, s, f+df(f,t+dt(t)), t+dt(t))
                ${uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))}
            + v_online_MIP(unit, s, f+df(f,t+dt(t)), t+dt(t))
                ${uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))}
999
1000
            ) // END sum(ft)
        ) // END sum(mst_start)