2d_constraints.gms 95.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
$ontext
This file is part of Backbone.

Backbone is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Backbone is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Backbone.  If not, see <http://www.gnu.org/licenses/>.
$offtext

18

19
* =============================================================================
20
* --- Constraint Equation Definitions -----------------------------------------
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
* =============================================================================

* --- Energy Balance ----------------------------------------------------------

q_balance(gn(grid, node), mft(m, f, t))${   not p_gn(grid, node, 'boundAll')
                                            } .. // Energy/power balance dynamics solved using implicit Euler discretization

    // The left side of the equation is the change in the state (will be zero if the node doesn't have a state)
    + p_gn(grid, node, 'energyStoredPerUnitOfState')${gn_state(grid, node)} // Unit conversion between v_state of a particular node and energy variables (defaults to 1, but can have node based values if e.g. v_state is in Kelvins and each node has a different heat storage capacity)
        * [
            + v_state(grid, node, f+df_central(f,t), t)                   // The difference between current
            - v_state(grid, node, f+df(f,t+dt(t)), t+dt(t))                     // ... and previous state of the node
            ]

    =E=

    // The right side of the equation contains all the changes converted to energy terms
    + p_stepLength(m, f, t) // Multiply with the length of the timestep to convert power into energy
        * (
            // Self discharge out of the model boundaries
41
42
            - p_gn(grid, node, 'selfDischargeLoss')${ gn_state(grid, node) }
                * v_state(grid, node, f+df_central(f,t), t) // The current state of the node
43
44

            // Energy diffusion from this node to neighbouring nodes
45
            - sum(to_node${ gnn_state(grid, node, to_node) },
46
                + p_gnn(grid, node, to_node, 'diffCoeff')
47
                    * v_state(grid, node, f+df_central(f,t), t)
48
49
50
                ) // END sum(to_node)

            // Energy diffusion from neighbouring nodes to this node
51
            + sum(from_node${ gnn_state(grid, from_node, node) },
52
                + p_gnn(grid, from_node, node, 'diffCoeff')
53
                    * v_state(grid, from_node, f+df_central(f,t), t) // Incoming diffusion based on the state of the neighbouring node
54
55
56
                ) // END sum(from_node)

            // Controlled energy transfer, applies when the current node is on the left side of the connection
57
            - sum(node_${ gn2n_directional(grid, node, node_) },
58
                + (1 - p_gnn(grid, node, node_, 'transferLoss')) // Reduce transfer losses
59
                    * v_transfer(grid, node, node_, f, t)
60
                + p_gnn(grid, node, node_, 'transferLoss') // Add transfer losses back if transfer is from this node to another node
61
                    * v_transferRightward(grid, node, node_, f, t)
62
63
64
                ) // END sum(node_)

            // Controlled energy transfer, applies when the current node is on the right side of the connection
65
66
            + sum(node_${ gn2n_directional(grid, node_, node) },
                + v_transfer(grid, node_, node, f, t)
67
                - p_gnn(grid, node_, node, 'transferLoss') // Reduce transfer losses if transfer is from another node to this node
68
                    * v_transferRightward(grid, node_, node, f, t)
69
70
71
72
73
                ) // END sum(node_)

            // Interactions between the node and its units
            + sum(gnuft(grid, node, unit, f, t),
                + v_gen(grid, node, unit, f, t) // Unit energy generation and consumption
74
                )
75
76
77
78
79
80
81
82
83
84
85

            // Spilling energy out of the endogenous grids in the model
            - v_spill(grid, node, f, t)${node_spill(node)}

            // Power inflow and outflow timeseries to/from the node
            + ts_influx_(grid, node, f, t)   // Incoming (positive) and outgoing (negative) absolute value time series

            // Dummy generation variables, for feasibility purposes
            + vq_gen('increase', grid, node, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
            - vq_gen('decrease', grid, node, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
    ) // END * p_stepLength
86
;
87
88

* --- Reserve Demand ----------------------------------------------------------
89
90
// NOTE! Currently, there are multiple identical instances of the reserve balance equation being generated for each forecast branch even when the reserves are committed and identical between the forecasts.
// NOTE! This could be solved by formulating a new "ft_reserves" set to cover only the relevant forecast-time steps, but it would possibly make the reserves even more confusing.
91

92
93
94
95
96
97
q_resDemand(restypeDirectionNode(restype, up_down, node), ft(f, t))
    ${  ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')
        and not [ restypeReleasedForRealization(restype)
            and ft_realized(f, t)
            ]
        } ..
98
99
    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, up_down, node, unit)},
100
        + v_reserve(restype, up_down, node, unit, f+df_reserves(node, restype, f, t), t)
101
102
103
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
104
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},
105
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
106
            * v_resTransferRightward(restype, up_down, node_, node, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
107
        ) // END sum(gn2n_directional)
108
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},
109
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
110
            * v_resTransferLeftward(restype, up_down, node, node_, f+df_reserves(node_, restype, f, t), t) // Reserves from another node - reduces the need for reserves in the node
111
112
113
114
115
116
117
118
119
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves
    + ts_reserveDemand_(restype, up_down, node, f, t)${p_nReserves(node, restype, 'use_time_series')}
    + p_nReserves(node, restype, up_down)${not p_nReserves(node, restype, 'use_time_series')}

    // Reserve provisions to another nodes via transfer links
120
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNodeNode(restype, up_down, node_, node)},   // If trasferring reserves to another node, increase your own reserves by same amount
121
        + v_resTransferRightward(restype, up_down, node, node_, f+df_reserves(node, restype, f, t), t)
122
        ) // END sum(gn2n_directional)
123
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNodeNode(restype, up_down, node_, node)},   // If trasferring reserves to another node, increase your own reserves by same amount
124
        + v_resTransferLeftward(restype, up_down, node_, node, f+df_reserves(node, restype, f, t), t)
125
126
127
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
128
129
    - vq_resDemand(restype, up_down, node, f+df_reserves(node, restype, f, t), t)
    - vq_resMissing(restype, up_down, node, f+df_reserves(node, restype, f, t), t)${ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)}
130
;
131
132
133

* --- Maximum Downward Capacity -----------------------------------------------

134
q_maxDownward(m, gnuft(grid, node, unit, f, t))${   [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
                                                        and sum(restype, nuRescapable(restype, 'down', node, unit)) // downward reserves
                                                        ]
                                                    // NOTE!!! Could be better to form a gnuft_reserves subset?
                                                    or [ // the unit has an online variable
                                                        uft_online(unit, f, t)
                                                        and [
                                                            (unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeGen')) // generators with a min. load
                                                            or p_gnu(grid, node, unit, 'maxCons') // or consuming units with an online variable
                                                            ]
                                                        ] // END or
                                                    or [ // consuming units with investment possibility
                                                        gnu_input(grid, node, unit)
                                                        and [unit_investLP(unit) or unit_investMIP(unit)]
                                                        ]
                                                    } ..
    // Energy generation/consumption
    + v_gen(grid, node, unit, f, t)

    // Considering output constraints (e.g. cV line)
154
155
156
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
            * v_gen(grid_output, node_, unit, f, t)
157
158
159
        ) // END sum(gngnu_constrainedOutputRatio)

    // Downward reserve participation
160
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
161
        + v_reserve(restype, 'down', node, unit, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
162
163
164
165
166
167
        ) // END sum(nuRescapable)

    =G= // Must be greater than minimum load or maximum consumption  (units with min-load and both generation and consumption are not allowed)

    // Generation units, greater than minload
    + p_gnu(grid, node, unit, 'unitSizeGen')
168
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
169
170
171
172
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [ // Online variables should only be generated for units with restrictions
173
174
            + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f+df_central(f,t), t)} // LP online variant
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f+df_central(f,t), t)} // MIP online variant
175
176
            ] // END v_online

Niina Helistö's avatar
Niina Helistö committed
177
178
179
    + [
        // Units that are in the run-up phase need to keep up with the run-up ramp rate (contained in p_ut_runUp)
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
180
181
            * sum(t_active(t_)${    ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                    and ord(t_) <= ord(t)},
Niina Helistö's avatar
Niina Helistö committed
182
                + sum(unitStarttype(unit, starttype),
183
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
184
185
186
187
188
189
190
191
                        * sum(t_full(t__)${ord(t__) = p_u_runUpTimeIntervalsCeil(unit) - ord(t) - dt_next(t) + 1 + ord(t_)}, // last step in the interval
                            + p_ut_runUp(unit, t__)
*                                * 1 // test values [0,1] to provide some flexibility
                            ) // END sum(t__)
                    ) // END sum(unitStarttype)
                ) // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by the minimum load (contained in p_ut_runUp(unit, 't00000'))
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
192
            * sum(t_active(t_)${ ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t)) },
Niina Helistö's avatar
Niina Helistö committed
193
                + sum(unitStarttype(unit, starttype),
194
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
195
196
197
198
199
200
201
202
                        * sum(t_full(t__)${ord(t__) = 1}, p_ut_runUp(unit, t__))
                    ) // END sum(unitStarttype)
                ) // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}

    + [
        // Units that are in the shutdown phase need to keep up with the shutdown ramp rate (contained in p_ut_shutdown)
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
203
204
            * sum(t_active(t_)${    ord(t_) >= ord(t) + dt_next(t) + dt_toShutdown(unit, t + dt_next(t))
                                    and ord(t_) < ord(t)},
205
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
206
207
                    * sum(t_full(t__)${ord(t__) = ord(t) - ord(t_) + 1},
                        + p_ut_shutdown(unit, t__)
208
                        ) // END sum(t__)
Niina Helistö's avatar
Niina Helistö committed
209
210
211
212
                ) // END sum(t_)
        // Units that are in the first time interval of the shutdown phase are limited by the minimum load (contained in p_ut_shutdown(unit, 't00000'))
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * (
213
                + v_shutdown(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
214
215
216
                    * sum(t_full(t__)${ord(t__) = 1}, p_ut_shutdown(unit, t__))
                ) // END * p_gnu(unitSizeGen)
        ]${uft_shutdownTrajectory(unit, f, t)}
217

218
219
220
221
222
    // Consuming units, greater than maxCons
    // Available capacity restrictions
    - p_unit(unit, 'availability')
        * [
            // Capacity factors for flow units
223
            + sum(flowUnit(flow, unit),
224
225
226
227
228
229
230
231
232
                + ts_cf_(flow, node, f, t)
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxCons')${not uft_online(unit, f, t)} // Use initial maximum if no online variables
            + p_gnu(grid, node, unit, 'unitSizeCons')
                * [
233
                    // Capacity online
234
235
                    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
                    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
236
237
238
239
240
241
242
243

                    // Investments to additional non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f, t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)} // NOTE! v_invest_LP also for consuming units is positive
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)} // NOTE! v_invest_MIP also for consuming units is positive
                        ) // END sum(t_invest)
244
245
                    ] // END * p_gnu(unitSizeCons)
            ] // END * p_unit(availability)
246
;
247
248
249

* --- Maximum Upwards Capacity ------------------------------------------------

250
q_maxUpward(m, gnuft(grid, node, unit, f, t))${ [   ord(t) < tSolveFirst + smax(restype, p_nReserves(node, restype, 'reserve_length')) // Unit is either providing
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
                                                    and sum(restype, nuRescapable(restype, 'up', node, unit)) // upward reserves
                                                    ]
                                                or [
                                                    uft_online(unit, f, t) // or the unit has an online variable
                                                        and [
                                                            [unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeCons')] // consuming units with min_load
                                                            or [p_gnu(grid, node, unit, 'maxGen')]                          // generators with an online variable
                                                            ]
                                                    ]
                                                or [
                                                    gnu_output(grid, node, unit) // generators with investment possibility
                                                    and (unit_investLP(unit) or unit_investMIP(unit))
                                                    ]
                                                }..
    // Energy generation/consumption
    + v_gen(grid, node, unit, f, t)

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
            * v_gen(grid_output, node_, unit, f, t)
        ) // END sum(gngnu_constrainedOutputRatio)

    // Upwards reserve participation
275
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
276
        + v_reserve(restype, 'up', node, unit, f+df_reserves(node, restype, f, t), t)
277
278
279
280
281
282
        ) // END sum(nuRescapable)

    =L= // must be less than available/online capacity

    // Consuming units
    + p_gnu(grid, node, unit, 'unitSizeCons')
283
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
284
285
286
287
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [
288
289
            + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
290
291
292
293
294
295
296
            ] // END * p_gnu(unitSizeCons)

    // Generation units
    // Available capacity restrictions
    + p_unit(unit, 'availability') // Generation units are restricted by their (available) capacity
        * [
            // Capacity factor for flow units
297
            + sum(flowUnit(flow, unit),
298
299
300
301
302
303
304
305
306
                + ts_cf_(flow, node, f, t)
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxGen')${not uft_online(unit, f, t)} // Use initial maxGen if no online variables
            + p_gnu(grid, node, unit, 'unitSizeGen')
                * [
307
                    // Capacity online
308
309
                    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f ,t)}
                    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
310
311
312
313
314
315
316
317

                    // Investments to non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f ,t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)}
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                        ) // END sum(t_invest)
318
319
                    ] // END * p_gnu(unitSizeGen)
            ] // END * p_unit(availability)
320

Niina Helistö's avatar
Niina Helistö committed
321
322
323
    + [
        // Units that are in the run-up phase need to keep up with the run-up ramp rate (contained in p_ut_runUp)
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
324
325
            * sum(t_active(t_)${    ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                    and ord(t_) <= ord(t)},
Niina Helistö's avatar
Niina Helistö committed
326
                + sum(unitStarttype(unit, starttype),
327
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
328
329
330
331
332
333
334
                        * sum(t_full(t__)${ord(t__) = p_u_runUpTimeIntervalsCeil(unit) - ord(t) - dt_next(t) + 1 + ord(t_)}, // last step in the interval
                            + p_ut_runUp(unit, t__)
                            ) // END sum(t__)
                    ) // END sum(unitStarttype)
                ) // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by the p_u_maxOutputInLastRunUpInterval
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
335
            * sum(t_active(t_)${ ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t)) },
Niina Helistö's avatar
Niina Helistö committed
336
                + sum(unitStarttype(unit, starttype),
337
                    + v_startup(unit, starttype, f+df(f,t_), t_)
338
                        * p_u_maxOutputInLastRunUpInterval(unit)
Niina Helistö's avatar
Niina Helistö committed
339
340
341
342
343
344
345
                    ) // END sum(unitStarttype)
                ) // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}

    + [
        // Units that are in the shutdown phase need to keep up with the shutdown ramp rate (contained in p_ut_shutdown)
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
346
347
            * sum(t_active(t_)${    ord(t_) >= ord(t) + dt_next(t) + dt_toShutdown(unit, t + dt_next(t))
                                    and ord(t_) < ord(t)},
348
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
349
350
351
352
353
354
355
                    * sum(t_full(t__)${ord(t__) = ord(t) - ord(t_) + 1},
                        + p_ut_shutdown(unit, t__)
                        ) // END sum(t__)
                ) // END sum(t_)
        // Units that are in the first time interval of the shutdown phase are limited by p_u_maxOutputInFirstShutdownInterval
        + p_gnu(grid, node, unit, 'unitSizeGen')
            * (
356
                + v_shutdown(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
357
358
359
                    * p_u_maxOutputInFirstShutdownInterval(unit)
                ) // END * p_gnu(unitSizeGen)
        ]${uft_shutdownTrajectory(unit, f, t)}
360
;
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
* --- Reserve Provision of Units with Investments -----------------------------

q_reserveProvision(nuRescapable(restypeDirectionNode(restype, up_down, node), unit), ft(f, t))${ ord(t) <= tSolveFirst + p_nReserves(node, restype, 'reserve_length')
                                                                                                 and nuft(node, unit, f, t)
                                                                                                 and (unit_investLP(unit) or unit_investMIP(unit))
                                                                                                 and not ft_reservesFixed(node, restype, f+df_reserves(node, restype, f, t), t)
                                                                                                 } ..
    + v_reserve(restype, up_down, node, unit, f+df_reserves(node, restype, f, t), t)

    =L=

    + p_nuReserves(node, unit, restype, up_down)
        * [
            + sum(grid, p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )  // Reserve sets and variables are currently lacking the grid dimension...
            + sum(t_invest(t_)${ ord(t_)<=ord(t) },
                + v_invest_LP(unit, t_)${unit_investLP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                    * sum(grid, p_gnu(grid, node, unit, 'unitSizeTot')) // Reserve sets and variables are currently lacking the grid dimension...
                ) // END sum(t_)
            ]
        * [
            + 1${ft_realized(f+df_reserves(node, restype, f, t), t)} // reserveReliability limits the reliability of reserves locked ahead of time.
            + p_nuReserves(node, unit, restype, 'reserveReliability')${not ft_realized(f+df_reserves(node, restype, f, t), t)}
            ] // How to consider reserveReliability in the case of investments when we typically only have "realized" time steps?
;

389
390
* --- Unit Startup and Shutdown -----------------------------------------------

391
q_startshut(m, uft_online(unit, f, t)) ..
392
393
394
    // Units currently online
    + v_online_LP (unit, f+df_central(f,t), t)${uft_onlineLP (unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
395
396

    // Units previously online
397
398

    // The same units
399
    - v_online_LP (unit, f+df(f,t+dt(t)), t+dt(t))${ uft_onlineLP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
400
                                                             and not uft_aggregator_first(unit, f, t) } // This reaches to tFirstSolve when dt = -1
401
    - v_online_MIP(unit, f+df(f,t+dt(t)), t+dt(t))${ uft_onlineMIP_withPrevious(unit, f+df(f,t+dt(t)), t+dt(t))
402
403
404
405
                                                             and not uft_aggregator_first(unit, f, t) }

    // Aggregated units just before they are turned into aggregator units
    - sum(unit_${unitAggregator_unit(unit, unit_)},
406
407
        + v_online_LP (unit_, f+df(f,t+dt(t)), t+dt(t))${uft_onlineLP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
        + v_online_MIP(unit_, f+df(f,t+dt(t)), t+dt(t))${uft_onlineMIP_withPrevious(unit_, f+df(f,t+dt(t)), t+dt(t))}
408
        )${uft_aggregator_first(unit, f, t)} // END sum(unit_)
409

410
411
    =E=

412
    // Unit startup and shutdown
413

414
    // Add startup of units dt_toStartup before the current t (no start-ups for aggregator units before they become active)
415
    + sum(unitStarttype(unit, starttype),
416
        + v_startup(unit, starttype, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))
417
        )${not [unit_aggregator(unit) and ord(t) + dt_toStartup(unit, t) <= tSolveFirst + p_unit(unit, 'lastStepNotAggregated')]} // END sum(starttype)
418

419
420
421
422
    // NOTE! According to 3d_setVariableLimits,
    // cannot start a unit if the time when the unit would become online is outside
    // the horizon when the unit has an online variable
    // --> no need to add start-ups of aggregated units to aggregator units
423

424
    // Shutdown of units at time t
425
    - v_shutdown(unit, f, t)
426
;
427

428
*--- Startup Type -------------------------------------------------------------
429
// !!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
430
431
432
// This formulation doesn't work as intended when unitCount > 1, as one recent
// shutdown allows for multiple hot/warm startups on subsequent time steps.
// Pending changes.
433

434
q_startuptype(m, starttypeConstrained(starttype), uft_online(unit, f, t))${ unitStarttype(unit, starttype) } ..
435
436

    // Startup type
437
    + v_startup(unit, starttype, f, t)
438
439
440
441

    =L=

    // Subunit shutdowns within special startup timeframe
Topi Rasku's avatar
Topi Rasku committed
442
443
444
    + sum(unitCounter(unit, counter)${dt_starttypeUnitCounter(starttype, unit, counter)},
        + v_shutdown(unit, f+df(f,t+(dt_starttypeUnitCounter(starttype, unit, counter)+1)), t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))
            ${t_active(t+(dt_starttypeUnitCounter(starttype, unit, counter)+1))}
445
446
447
        ) // END sum(counter)

    // NOTE: for aggregator units, shutdowns for aggregated units are not considered
448
;
449

450

451
452
*--- Online Limits with Startup Type Constraints and Investments --------------

453
q_onlineLimit(m, uft_online(unit, f, t))${  p_unit(unit, 'minShutdownHours')
454
                                            or p_u_runUpTimeIntervals(unit)
455
456
457
458
                                            or unit_investLP(unit)
                                            or unit_investMIP(unit)
                                            } ..
    // Online variables
459
460
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f ,t)}
461
462
463
464
465
466

    =L=

    // Number of existing units
    + p_unit(unit, 'unitCount')

467
    // Number of units unable to become online due to restrictions
Topi Rasku's avatar
Topi Rasku committed
468
469
470
    - sum(unitCounter(unit, counter)${dt_downtimeUnitCounter(unit, counter)},
        + v_shutdown(unit, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
            ${t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))}
471
472
473
474
        ) // END sum(counter)

    // Number of units unable to become online due to restrictions (aggregated units in the past horizon or if they have an online variable)
    - sum(unit_${unitAggregator_unit(unit, unit_)},
Topi Rasku's avatar
Topi Rasku committed
475
476
477
        + sum(unitCounter(unit, counter)${dt_downtimeUnitCounter(unit, counter)},
            + v_shutdown(unit_, f+df(f,t+(dt_downtimeUnitCounter(unit, counter) + 1)), t+(dt_downtimeUnitCounter(unit, counter) + 1))
                ${t_active(t+(dt_downtimeUnitCounter(unit, counter) + 1))}
478
479
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
480
481
482

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
483
484
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
485
486
487
        ) // END sum(t_invest)
;

488
489
490
491
*--- Both q_offlineAfterShutdown and q_onlineOnStartup work when there is only one unit.
*    These equations prohibit single units turning on and off at the same time step.
*    Unfortunately there seems to be no way to prohibit this when unit count is > 1.
*    (it shouldn't be worthwhile anyway if there is a startup cost, but it can fall within the solution gap).
492
493
494
495
496
497
498
499
500
q_onlineOnStartUp(uft_online(unit, f, t))${sum(starttype, unitStarttype(unit, starttype))}..

    // Units currently online
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}

    =G=

    + sum(unitStarttype(unit, starttype),
501
        + v_startup(unit, starttype, f+df(f,t+dt_toStartup(unit, t)), t+dt_toStartup(unit, t))  //dt_toStartup displaces the time step to the one where the unit would be started up in order to reach online at t
502
503
504
505
506
      ) // END sum(starttype)
;

q_offlineAfterShutdown(uft_online(unit, f, t))${sum(starttype, unitStarttype(unit, starttype))}..

507
508
509
510
511
    // Number of existing units
    + p_unit(unit, 'unitCount')

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
512
513
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
514
515
        ) // END sum(t_invest)

516
517
518
519
520
521
    // Units currently online
    - v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    - v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}

    =G=

522
    + v_shutdown(unit, f, t)
523
524
;

525
526
*--- Minimum Unit Uptime ------------------------------------------------------

527
q_onlineMinUptime(m, uft_online(unit, f, t))${  p_unit(unit, 'minOperationHours')
528
529
530
                                                } ..

    // Units currently online
531
532
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
533
534
535
536

    =G=

    // Units that have minimum operation time requirements active
Topi Rasku's avatar
Topi Rasku committed
537
    + sum(unitCounter(unit, counter)${dt_uptimeUnitCounter(unit, counter)},
538
        + sum(unitStarttype(unit, starttype),
Topi Rasku's avatar
Topi Rasku committed
539
540
            + v_startup(unit, starttype, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
                ${t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))}
541
            ) // END sum(starttype)
542
543
544
        ) // END sum(counter)

    // Units that have minimum operation time requirements active (aggregated units in the past horizon or if they have an online variable)
Topi Rasku's avatar
Topi Rasku committed
545
546
    + sum(unitAggregator_unit(unit, unit_),
        + sum(unitCounter(unit, counter)${dt_uptimeUnitCounter(unit, counter)},
547
            + sum(unitStarttype(unit, starttype),
Topi Rasku's avatar
Topi Rasku committed
548
549
                + v_startup(unit, starttype, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1)), t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))
                    ${t_active(t+(dt_uptimeUnitCounter(unit, counter)+dt_toStartup(unit, t) + 1))}
550
551
552
                ) // END sum(starttype)
            ) // END sum(counter)
        )${unit_aggregator(unit)} // END sum(unit_)
553
554
;

555
* --- Ramp Constraints --------------------------------------------------------
556
557
558
559

q_genRamp(m, s, gnuft_ramp(grid, node, unit, f, t))${  ord(t) > msStart(m, s) + 1
                                                       and msft(m, s, f, t)
                                                       } ..
560

561
    + v_genRamp(grid, node, unit, f, t) * p_stepLength(m, f, t)
562

563
    =E=
564

565
    // Change in generation over the interval: v_gen(t) - v_gen(t-1)
566
    + v_gen(grid, node, unit, f, t)
567

568
569
570
571
    // Unit generation at t-1 (except aggregator units right before the aggregation threshold, see next term)
    - v_gen(grid, node, unit, f+df(f,t+dt(t)), t+dt(t))${not uft_aggregator_first(unit, f, t)}
    // Unit generation at t-1, aggregator units right before the aggregation threshold
    + sum(unit_${unitAggregator_unit(unit, unit_)},
572
        - v_gen(grid, node, unit_, f+df(f,t+dt(t)), t+dt(t))
573
      )${uft_aggregator_first(unit, f, t)}
574
;
575

576
* --- Ramp Up Limits ----------------------------------------------------------
577
578
579
580

q_rampUpLimit(m, s, gnuft_ramp(grid, node, unit, f, t))${  ord(t) > msStart(m, s) + 1
                                                           and msft(m, s, f, t)
                                                           and p_gnu(grid, node, unit, 'maxRampUp')
581
582
583
584
585
                                                           and [ sum(restype, nuRescapable(restype, 'up', node, unit))
                                                                 or uft_online(unit, f, t)
                                                                 or unit_investLP(unit)
                                                                 or unit_investMIP(unit)
                                                                 ]
586
                                                           } ..
587
    + v_genRamp(grid, node, unit, f, t)
588
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
589
        + v_reserve(restype, 'up', node, unit, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
590
591
592
593
594
        ) // END sum(nuRescapable)
        / p_stepLength(m, f, t)

    =L=

595
    // Ramping capability of units without an online variable
596
597
598
599
600
601
602
603
604
605
606
607
    + (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
            + v_invest_LP(unit, t_)${not uft_onlineLP(unit, f, t) and unit_investLP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
            + v_invest_MIP(unit, t_)${not uft_onlineMIP(unit, f, t) and unit_investMIP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

608
    // Ramping capability of units with an online variable
609
610
611
612
613
614
615
616
    + (
        + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnu(grid, node, unit, 'maxRampUp')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

Niina Helistö's avatar
Niina Helistö committed
617
618
619
    + [
        // Units that are in the run-up phase need to keep up with the run-up ramp rate
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
620
621
            * sum(t_active(t_)${    ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                    and ord(t_) <= ord(t)},
Niina Helistö's avatar
Niina Helistö committed
622
                + sum(unitStarttype(unit, starttype),
623
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
624
625
626
627
628
629
                        * p_unit(unit, 'rampSpeedToMinLoad')
                        * 60   // Unit conversion from [p.u./min] to [p.u./h]
                  ) // END sum(unitStarttype)
              ) // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by rampSpeedToMinLoad and maxRampUp
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
630
631
            * sum(t_active(t_)${    ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                    and uft_startupTrajectory(unit, f, t)},
Niina Helistö's avatar
Niina Helistö committed
632
                + sum(unitStarttype(unit, starttype),
633
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
634
635
636
637
638
                        * max(p_unit(unit, 'rampSpeedToMinLoad'), p_gnu(grid, node, unit, 'maxRampUp')) // could also be weighted average from 'maxRampUp' and 'rampSpeedToMinLoad'
                        * 60   // Unit conversion from [p.u./min] to [p.u./h]
                  ) // END sum(unitStarttype)
              ) // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}
639

640
    // Shutdown of consumption units from full load
641
    + v_shutdown(unit, f, t)${uft_online(unit, f, t) and gnu_input(grid, node, unit)}
642
        * p_gnu(grid, node, unit, 'unitSizeTot')
643
;
644

645
* --- Ramp Down Limits --------------------------------------------------------
646
647
648
649

q_rampDownLimit(m, s, gnuft_ramp(grid, node, unit, f, t))${  ord(t) > msStart(m, s) + 1
                                                             and msft(m, s, f, t)
                                                             and p_gnu(grid, node, unit, 'maxRampDown')
650
651
652
653
654
                                                             and [ sum(restype, nuRescapable(restype, 'down', node, unit))
                                                                   or uft_online(unit, f, t)
                                                                   or unit_investLP(unit)
                                                                   or unit_investMIP(unit)
                                                                   ]
655
                                                             } ..
656
    + v_genRamp(grid, node, unit, f, t)
657
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + p_nReserves(node, restype, 'reserve_length')},
658
        + v_reserve(restype, 'down', node, unit, f+df_reserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
659
660
661
662
663
        ) // END sum(nuRescapable)
        / p_stepLength(m, f, t)

    =G=

664
    // Ramping capability of units without online variable
665
666
667
668
669
670
671
672
673
674
675
676
    - (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
            + v_invest_LP(unit, t_)${not uft_onlineLP(unit, f, t) and unit_investLP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
            + v_invest_MIP(unit, t_)${not uft_onlineMIP(unit, f, t) and unit_investMIP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnu(grid, node, unit, 'maxRampDown')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

677
    // Ramping capability of units that are online
678
679
680
681
682
683
684
685
    - (
        + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnu(grid, node, unit, 'maxRampDown')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]

686
    // Shutdown of generation units from full load
687
    - v_shutdown(unit, f, t)${   uft_online(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
688
689
                                                 and gnu_output(grid, node, unit)
                                                 and not uft_shutdownTrajectory(unit, f, t)}
690
        * p_gnu(grid, node, unit, 'unitSizeTot')
691

Niina Helistö's avatar
Niina Helistö committed
692
693
694
    + [
        // Units that are in the shutdown phase need to keep up with the shutdown ramp rate
        - p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
695
696
            * sum(t_active(t_)${    ord(t_) >= ord(t) + dt_toShutdown(unit, t)
                                    and ord(t_) < ord(t) + dt(t)},
697
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
698
699
700
                    * p_unit(unit, 'rampSpeedFromMinLoad')
                    * 60   // Unit conversion from [p.u./min] to [p.u./h]
              ) // END sum(t_)
701

Niina Helistö's avatar
Niina Helistö committed
702
703
704
        // Units that are in the first time interval of the shutdown phase are limited rampSpeedFromMinLoad and maxRampDown
        - p_gnu(grid, node, unit, 'unitSizeGen')
            * (
705
                + v_shutdown(unit, f+df(f,t+dt(t)), t+dt(t))
Niina Helistö's avatar
Niina Helistö committed
706
707
708
709
710
711
712
                    * max(p_unit(unit, 'rampSpeedFromMinLoad'), p_gnu(grid, node, unit, 'maxRampDown')) // could also be weighted average from 'maxRampDown' and 'rampSpeedFromMinLoad'
                    * 60   // Unit conversion from [p.u./min] to [p.u./h]
                ) // END * p_gnu(unitSizeGen)

        // Units just starting the shutdown phase are limited by the maxRampDown
        - p_gnu(grid, node, unit, 'unitSizeGen')
            * (
713
                + v_shutdown(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
714
715
716
717
                    * p_gnu(grid, node, unit, 'maxRampDown')
                    * 60   // Unit conversion from [p.u./min] to [p.u./h]
                ) // END * p_gnu(unitSizeGen)
        ]${uft_shutdownTrajectory(unit, f, t)}
718
719
;

720
721
722
723
724
725
726
* --- Ramps separated into upward and downward ramps --------------------------

q_rampUpDown(m, s, gnuft_ramp(grid, node, unit, f, t))${  ord(t) > msStart(m, s) + 1
                                                          and msft(m, s, f, t)
                                                          and sum(slack, gnuft_rampCost(grid, node, unit, slack, f, t))
                                                          } ..

727
    + v_genRamp(grid, node, unit, f, t)
728

729
    =E=
730

731
732
733
734
735
    // Upward and downward ramp categories
    + sum(slack${ gnuft_rampCost(grid, node, unit, slack, f, t) },
        + v_genRampUpDown(grid, node, unit, slack, f, t)$upwardSlack(slack)
        - v_genRampUpDown(grid, node, unit, slack, f, t)$downwardSlack(slack)
      ) // END sum(slack)
736
737
;

Niina Helistö's avatar
Niina Helistö committed
738
* --- Upward and downward ramps constrained by slack boundaries ---------------
739
740
741
742
743

q_rampSlack(m, s, gnuft_rampCost(grid, node, unit, slack, f, t))${  ord(t) > msStart(m, s) + 1
                                                                    and msft(m, s, f, t)
                                                                    } ..

744
    + v_genRampUpDown(grid, node, unit, slack, f, t)
745

746
    =L=
747
748

    // Ramping capability of units without an online variable
749
750
751
752
753
754
755
756
757
758
759
    + (
        + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
        + sum(t_invest(t_)${ ord(t_)<=ord(t) },
            + v_invest_LP(unit, t_)${not uft_onlineLP(unit, f, t) and unit_investLP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
            + v_invest_MIP(unit, t_)${not uft_onlineMIP(unit, f, t) and unit_investMIP(unit)}
                * p_gnu(grid, node, unit, 'unitSizeTot')
          )
      )
        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
760
761

    // Ramping capability of units with an online variable
762
763
764
765
766
767
768
    + (
        + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
        + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
      )
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
769

Niina Helistö's avatar
Niina Helistö committed
770
771
772
    + [
        // Ramping of units that are in the run-up phase
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
773
774
            * sum(t_active(t_)${    ord(t_) >= ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                    and ord(t_) <= ord(t)},
Niina Helistö's avatar
Niina Helistö committed
775
                + sum(unitStarttype(unit, starttype),
776
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
777
778
779
780
781
                        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
                        * 60   // Unit conversion from [p.u./min] to [p.u./h]
                  ) // END sum(unitStarttype)
              ) // END sum(t_)
        ]${uft_startupTrajectory(unit, f, t)}
782
783

    // Shutdown of consumption units from full load
784
    + v_shutdown(unit, f, t)${uft_online(unit, f, t) and gnu_input(grid, node, unit)}
785
786
787
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
788

789
    // Shutdown of generation units from full load and ramping of units in the beginning of the shutdown phase
790
    + v_shutdown(unit, f, t)${uft_online(unit, f, t) and gnu_output(grid, node, unit)}
791
792
793
        * p_gnu(grid, node, unit, 'unitSizeTot')
        * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
        * 60   // Unit conversion from [p.u./min] to [p.u./h]
794

Niina Helistö's avatar
Niina Helistö committed
795
796
797
    + [
        // Ramping of units that are in the shutdown phase
        + p_gnu(grid, node, unit, 'unitSizeGen')
Topi Rasku's avatar
Topi Rasku committed
798
799
            * sum(t_active(t_)${    ord(t_) >= ord(t) + dt_toShutdown(unit, t)
                                    and ord(t_) <= ord(t) + dt(t)},
800
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
801
802
803
804
                    * p_gnuBoundaryProperties(grid, node, unit, slack, 'rampLimit')
                    * 60   // Unit conversion from [p.u./min] to [p.u./h]
              ) // END sum(t_)
        ]${uft_shutdownTrajectory(unit, f, t)}
805
;
806

807
808
809
810
811
812
813
* --- Fixed Output Ratio ------------------------------------------------------

q_outputRatioFixed(gngnu_fixedOutputRatio(grid, node, grid_, node_, unit), ft(f, t))${  uft(unit, f, t)
                                                                                        } ..

    // Generation in grid
    + v_gen(grid, node, unit, f, t)
814
        / p_gnu(grid, node, unit, 'conversionFactor')
815
816
817
818
819

    =E=

    // Generation in grid_
    + v_gen(grid_, node_, unit, f, t)
820
        / p_gnu(grid_, node_, unit, 'conversionFactor')
821
;
822
823
824
825
826
827
828
829

* --- Constrained Output Ratio ------------------------------------------------

q_outputRatioConstrained(gngnu_constrainedOutputRatio(grid, node, grid_, node_, unit), ft(f, t))${  uft(unit, f, t)
                                                                                                    } ..

    // Generation in grid
    + v_gen(grid, node, unit, f, t)
830
        / p_gnu(grid, node, unit, 'conversionFactor')
831
832
833
834
835

    =G=

    // Generation in grid_
    + v_gen(grid_, node_, unit, f, t)
836
        / p_gnu(grid_, node_, unit, 'conversionFactor')
Juha Kiviluoma's avatar
Juha Kiviluoma committed
837
;
838
839
840

* --- Direct Input-Output Conversion ------------------------------------------

841
q_conversionDirectInputOutput(suft(effDirect(effGroup), unit, f, t)) ..
842
843

    // Sum over endogenous energy inputs
844
    - sum(gnu_input(grid, node, unit)${not p_gnu(grid, node, unit, 'doNotOutput')},
845
846
847
848
849
850
851
852
        + v_gen(grid, node, unit, f, t)
        ) // END sum(gnu_input)

    // Sum over fuel energy inputs
    + sum(uFuel(unit, 'main', fuel),
        + v_fuelUse(fuel, unit, f, t)
        ) // END sum(uFuel)

853
854
    // Main fuel is not used during run-up and shutdown phases
    + [
Niina Helistö's avatar
Niina Helistö committed
855
856
857
858
        // Units that are in the run-up phase need to keep up with the run-up ramp rate (contained in p_ut_runUp)
        + sum(gnu_output(grid, node, unit)$uft_startupTrajectory(unit, f, t),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
Topi Rasku's avatar
Topi Rasku committed
859
860
861
            * sum(t_active(t_)${    ord(t_) > ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t))
                                    and ord(t_) <= ord(t)
                                    },
Niina Helistö's avatar
Niina Helistö committed
862
                + sum(unitStarttype(unit, starttype),
863
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
864
865
866
867
868
869
870
871
872
                        * sum(t_full(t__)${ ord(t__) = p_u_runUpTimeIntervalsCeil(unit) - ord(t) - dt_next(t) + 1 + ord(t_) }, // last step in the interval
                            + p_ut_runUp(unit, t__)
                          ) // END sum(t__)
                  ) // END sum(unitStarttype)
              )  // END sum(t_)
        // Units that are in the last time interval of the run-up phase are limited by the minimum load (contained in p_ut_runUp(unit, 't00000'))
        + sum(gnu_output(grid, node, unit)$uft_startupTrajectory(unit, f, t),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
Topi Rasku's avatar
Topi Rasku committed
873
            * sum(t_active(t_)${ ord(t_) = ord(t) + dt_next(t) + dt_toStartup(unit, t + dt_next(t)) },
Niina Helistö's avatar
Niina Helistö committed
874
                + sum(unitStarttype(unit, starttype),
875
                    + v_startup(unit, starttype, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
876
877
878
879
880
881
882
883
                        * sum(t_full(t__)${ord(t__) = 1}, p_ut_runUp(unit, t__))
                  ) // END sum(unitStarttype)
              )  // END sum(t_)

        // Units that are in the shutdown phase need to keep up with the shutdown ramp rate (contained in p_ut_shutdown)
        + sum(gnu_output(grid, node, unit)$uft_shutdownTrajectory(unit, f, t),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
Topi Rasku's avatar
Topi Rasku committed
884
885
886
            * sum(t_active(t_)${    ord(t_) >= ord(t) + dt_next(t) + dt_toShutdown(unit, t + dt_next(t))
                                    and ord(t_) < ord(t)
                                    },
887
                + v_shutdown(unit, f+df(f,t_), t_)
Niina Helistö's avatar
Niina Helistö committed
888
889
890
891
892
893
894
895
896
                    * sum(t_full(t__)${ord(t__) = ord(t) - ord(t_) + 1},
                        + p_ut_shutdown(unit, t__)
                        ) // END sum(t__)
                ) // END sum(t_)
        // Units that are in the first time interval of the shutdown phase are limited by the minimum load (contained in p_ut_shutdown(unit, 't00000'))
        + sum(gnu_output(grid, node, unit)$uft_shutdownTrajectory(unit, f, t),
            + p_gnu(grid, node, unit, 'unitSizeGen')
          ) // END sum(gnu_output)
            * (
897
                + v_shutdown(unit, f, t)
Niina Helistö's avatar
Niina Helistö committed
898
899
900
                    * sum(t_full(t__)${ord(t__) = 1}, p_ut_shutdown(unit, t__))
                ) // END * p_gnu(unitSizeGen)
        ]${uft_startupTrajectory(unit, f, t) or uft_shutdownTrajectory(unit, f, t)} // END run-up and shutdown phases
901
902
903
904
905

    * [ // Heat rate
        + p_effUnit(effGroup, unit, effGroup, 'slope')${ not ts_effUnit(effGroup, unit, effGroup, 'slope', f, t) }
        + ts_effUnit(effGroup, unit, effGroup, 'slope', f, t)
        ] // END * v_gen
906

907
908
909
910
911
    =E=

    // Sum over energy outputs
    + sum(gnu_output(grid, node, unit),
        + v_gen(grid, node, unit, f, t)
912
            * [ // efficiency rate
913
                + p_effUnit(effGroup, unit, effGroup, 'slope')${ not ts_effUnit(effGroup, unit, effGroup, 'slope', f, t) }
914
                + ts_effUnit(effGroup, unit, effGroup, 'slope', f, t)
915
916
917
                ] // END * v_gen
        ) // END sum(gnu_output)

918
    // Consumption of keeping units online (no-load fuel use)
919
920
921
922
    + sum(gnu_output(grid, node, unit),
        + p_gnu(grid, node, unit, 'unitSizeGen')
        ) // END sum(gnu_output)
        * [
923
924
            + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
925
926
            ] // END * sum(gnu_output)
        * [
927
928
            + p_effGroupUnit(effGroup, unit, 'section')${not ts_effUnit(effGroup, unit, effDirect, 'section', f, t)}
            + ts_effUnit(effGroup, unit, effGroup, 'section', f, t)
929
            ] // END * sum(gnu_output)
930
;
931
932
933

* --- SOS2 Efficiency Approximation -------------------------------------------

934
935
936
q_conversionSOS2InputIntermediate(suft(effLambda(effGroup), unit, f, t)) ..

    // Sum over endogenous energy inputs
937
    - sum(gnu_input(grid, node, unit)${not p_gnu(grid, node, unit, 'doNotOutput')},
938
939
940
941
942
943
944
945
        + v_gen(grid, node, unit, f, t)
        ) // END sum(gnu_input)

    // Sum over fuel energy inputs
    + sum(uFuel(unit, 'main', fuel),
        + v_fuelUse(fuel, unit, f, t)
        ) // END sum(uFuel)

946
    =G=
947
948
949
950
951

    // Sum over the endogenous outputs of the unit
    + sum(gnu_output(grid, node, unit), p_gnu(grid, node, unit, 'unitSizeGen'))
        * [
            // Consumption of generation
952
            + sum(effGroupSelectorUnit(effGroup, unit, effSelector),
953
954
955
956
957
958
959
960
961
962
                + v_sos2(unit, f, t, effSelector)
                    * [ // Operation points convert the v_sos2 variables into share of capacity used for generation
                        + p_effUnit(effGroup, unit, effSelector, 'op')${not ts_effUnit(effGroup, unit, effSelector, 'op', f, t)}
                        + ts_effUnit(effGroup, unit, effSelector, 'op', f, t)
                        ] // END * v_sos2
                    * [ // Heat rate
                        + p_effUnit(effGroup, unit, effSelector, 'slope')${not ts_effUnit(effGroup, unit, effSelector, 'slope', f, t)}
                        + ts_effUnit(effGroup, unit, effSelector, 'slope', f, t)
                        ] // END * v_sos2
                ) // END sum(effSelector)
963
           ]
964
;
965
966
967
968
969
970

* --- SOS 2 Efficiency Approximation Online Variables -------------------------

q_conversionSOS2Constraint(suft(effLambda(effGroup), unit, f, t)) ..

    // Total value of the v_sos2 equals the number of online units
971
    + sum(effGroupSelectorUnit(effGroup, unit, effSelector),
972
973
974
975
976
977
        + v_sos2(unit, f, t, effSelector)
        ) // END sum(effSelector)

    =E=

    // Number of units online
978
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
979
;
980
981
982
983
984
985
986
987

* --- SOS 2 Efficiency Approximation Output Generation ------------------------

q_conversionSOS2IntermediateOutput(suft(effLambda(effGroup), unit, f, t)) ..

    // Endogenous energy output
    + sum(gnu_output(grid, node, unit),
        + p_gnu(grid, node, unit, 'unitSizeGen')
988
      ) // END sum(gnu_output)
989
        * sum(effGroupSelectorUnit(effGroup, unit, effSelector),
990
991
992
993
            + v_sos2(unit, f, t, effSelector)
            * [ // Operation points convert v_sos2 into share of capacity used for generation
                + p_effUnit(effGroup, unit, effSelector, 'op')${not ts_effUnit(effGroup, unit, effSelector, 'op', f, t)}
                + ts_effUnit(effGroup, unit, effSelector, 'op', f, t)
994
995
              ] // END * v_sos2
          ) // END sum(effSelector)
996

Niina Helistö's avatar
Niina Helistö committed
997
998
999
1000
    + [
        // Units that are in the run-up phase need to keep up with the run-up ramp rate (contained in p_ut_runUp)
        + sum(gnu_output(grid, node, unit),
            + p_gnu(grid, node, unit, 'unitSizeGen')