2b_equations.gms 86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
$ontext
This file is part of Backbone.

Backbone is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Backbone is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Backbone.  If not, see <http://www.gnu.org/licenses/>.
$offtext

18
19
20
21
* =============================================================================
* --- Penalty Definitions -----------------------------------------------------
* =============================================================================

Topi Rasku's avatar
Topi Rasku committed
22
$setlocal def_penalty 1e4
23
24
25
26
27
28
29
30
Scalars
    PENALTY "Default equation violation penalty" / %def_penalty% /
;
Parameters
    PENALTY_BALANCE(grid) "Penalty on violating energy balance eq. (EUR/MWh)"
    PENALTY_RES(restype, up_down) "Penalty on violating a reserve (EUR/MW)"
;
PENALTY_BALANCE(grid) = %def_penalty%;
31
PENALTY_RES(restype, up_down) = 0.9*%def_penalty%;
32
33
34
35
36
37


* =============================================================================
* --- Equation Declarations ---------------------------------------------------
* =============================================================================

38
equations
39
    // Objective Function, Energy Balance, and Reserve demand
40
    q_obj "Objective function"
41
    q_balance(grid, node, mType, f, t) "Energy demand must be satisfied at each node"
42
    q_resDemand(restype, up_down, node, f, t) "Procurement for each reserve type is greater than demand"
43
44

    // Unit Operation
45
    q_maxDownward(mType, grid, node, unit, f, t) "Downward commitments will not undercut power plant minimum load constraints or maximum elec. consumption"
46
    q_noReserveInRunUp(mType, grid, node, unit, f, t)
47
    q_maxUpward(mType, grid, node, unit, f, t) "Upward commitments will not exceed maximum available capacity or consumed power"
48
    q_startshut(mType, unit, f, t) "Online cap. now minus online cap in the previous time step is equal to started up minus shut down capacity"
49
    q_startuptype(mType, starttype, unit, f, t) "Startup type depends on the time the unit has been non-operational"
50
51
    q_onlineOnStartUp(unit, f, t) "Unit must be online after starting up"
    q_offlineAfterShutdown(unit, f, t) "Unit must be offline after shutting down"
52
    q_onlineLimit(mType, unit, f, t) "Number of online units limited for units with startup constraints and investment possibility"
53
    q_onlineMinUptime(mType, unit, f, t) "Unit must stay operational if it has started up during the previous minOperationHours hours"
54
55
    q_genRamp(mType, grid, node, s, unit, f, t) "Record the ramps of units with ramp restricitions or costs"
    q_rampUpLimit(mType, grid, node, s, unit, f, t) "Up ramping limited for units"
56
    q_rampDownLimit(grid, node, mType, s, unit, f, t) "Down ramping limited for units"
57
58
    q_outputRatioFixed(grid, node, grid, node, unit, f, t) "Force fixed ratio between two energy outputs into different energy grids"
    q_outputRatioConstrained(grid, node, grid, node, unit, f, t) "Constrained ratio between two grids of energy output; e.g. electricity generation is greater than cV times unit_heat generation in extraction plants"
59
    q_conversionDirectInputOutput(effSelector, unit, f, t) "Direct conversion of inputs to outputs (no piece-wise linear part-load efficiencies)"
Juha Kiviluoma's avatar
Juha Kiviluoma committed
60
61
62
    q_conversionSOS2InputIntermediate(effSelector, unit, f, t)   "Intermediate output when using SOS2 variable based part-load piece-wise linearization"
    q_conversionSOS2Constraint(effSelector, unit, f, t)          "Sum of v_sos2 has to equal v_online"
    q_conversionSOS2IntermediateOutput(effSelector, unit, f, t)  "Output is forced equal with v_sos2 output"
63
64
65
66
67
68
69
70
71

    // Energy Transfer
    q_transfer(grid, node, node, f, t) "Rightward and leftward transfer must match the total transfer"
    q_transferRightwardLimit(grid, node, node, f, t) "Transfer of energy and capacity reservations to the rightward direction are less than the transfer capacity"
    q_transferLeftwardLimit(grid, node, node, f, t) "Transfer of energy and capacity reservations to the leftward direction are less than the transfer capacity"
    q_resTransferLimitRightward(grid, node, node, f, t) "Transfer of energy and capacity reservations are less than the transfer capacity to the rightward direction"
    q_resTransferLimitLeftward(grid, node, node, f, t) "Transfer of energy and capacity reservations are less than the transfer capacity to the leftward direction"

    // State Variables
72
    q_stateSlack(grid, node, slack, f, t) "Slack variable greater than the difference between v_state and the slack boundary"
73
74
    q_stateUpwardLimit(grid, node, mType, f, t) "Limit the commitments of a node with a state variable to the available headrooms"
    q_stateDownwardLimit(grid, node, mType, f, t) "Limit the commitments of a node with a state variable to the available headrooms"
75
*    q_boundState(grid, node, node, mType, f, t) "Node state variables bounded by other nodes"
76
    q_boundStateMaxDiff(grid, node, node, mType, f, t) "Node state variables bounded by other nodes (maximum state difference)"
77
    q_boundCyclic(grid, node, mType, s, s) "Cyclic bound for the first and the last states of samples"
78
*    q_boundCyclicSamples(grid, node, mType, s, f, t, s_, f_, t_) "Cyclic bound inside or between samples"
79

80
    // Policy
Niina Helistö's avatar
Niina Helistö committed
81
82
    q_inertiaMin(group, f, t) "Minimum inertia in a group of nodes"
    q_instantaneousShareMax(group, f, t) "Maximum instantaneous share of generation and controlled import from a group of units and links"
83
    q_capacityMargin(grid, node, f, t) "There needs to be enough capacity to cover energy demand plus a margin"
Niina Helistö's avatar
Niina Helistö committed
84
    q_constrainedCapMultiUnit(group, t) "Constrained unit number ratios and sums for a group of units"
85
86
87
    q_emissioncap(group, emission) "Limit for emissions"
    q_energyShareMax(group) "Maximum energy share of generation and import from a group of units"
    q_energyShareMin(group) "Minimum energy share of generation and import from a group of units"
88
89
;

90
91
92
93
94
* =============================================================================
* --- Equation Definitions ----------------------------------------------------
* =============================================================================

* --- Objective Function ------------------------------------------------------
95
96

q_obj ..
Topi Rasku's avatar
Topi Rasku committed
97
98

    + v_obj * 1e6
99
100
101
102
103
104

    =E=

    // Sum over all the samples, forecasts, and time steps in the current model
    + sum(msft(m, s, f, t),
        // Probability (weight coefficient) of (s,f,t)
Topi Rasku's avatar
Topi Rasku committed
105
        + p_msft_probability(m, s, f, t)
106
107
108
109
110
            * [
                // Time step length dependent costs
                + p_stepLength(m, f, t)
                    * [
                        // Variable O&M costs
111
                        + sum(gnuft(gnu_output(grid, node, unit), f, t),  // Calculated only for output energy
112
                            + v_gen(grid, node, unit, f, t)
113
114
115
116
                                * p_unit(unit, 'omCosts')
                            ) // END sum(gnu_output)

                        // Fuel and emission costs
117
118
                        + sum(uFuel(unit, 'main', fuel)${uft(unit, f, t)},
                            + v_fuelUse(fuel, unit, f, t)
119
                                * [
120
                                    + ts_fuelPrice_(fuel ,t)
121
                                    + sum(emission, // Emission taxes
122
                                        + p_unitFuelEmissionCost(unit, fuel, emission)
123
124
                                        )
                                    ] // END * v_fuelUse
Topi Rasku's avatar
Topi Rasku committed
125
                            ) // END sum(uFuel)
126

Topi Rasku's avatar
Topi Rasku committed
127
                        // Node state slack variable costs
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
                        + sum(gn_stateSlack(grid, node),
                            + sum(slack${p_gnBoundaryPropertiesForStates(grid, node, slack, 'slackCost')},
                                + v_stateSlack(grid, node, slack, f, t)
                                    * p_gnBoundaryPropertiesForStates(grid, node, slack, 'slackCost')
                                ) // END sum(slack)
                            ) // END sum(gn_stateSlack)

                        // Dummy variable penalties
                        // Energy balance feasibility dummy varible penalties
                        + sum(inc_dec,
                            + sum(gn(grid, node),
                                + vq_gen(inc_dec, grid, node, f, t)
                                    * PENALTY_BALANCE(grid)
                                ) // END sum(gn)
                            ) // END sum(inc_dec)

                        // Reserve provision feasibility dummy variable penalties
                        + sum(restypeDirectionNode(restype, up_down, node),
                            + vq_resDemand(restype, up_down, node, f, t)
                                * PENALTY_RES(restype, up_down)
                            ) // END sum(restypeDirectionNode)

                        ] // END * p_stepLength

152
                // Start-up costs, initial startup free as units could have been online before model started
153
                + sum(uft_online(unit, f, t),
154
                    + sum(unitStarttype(unit, starttype),
155
156
                        + v_startup(unit, starttype, f, t) // Cost of starting up
                            * [ // Startup variable costs
157
                                + p_uStartup(unit, starttype, 'cost', 'unit')
158
159

                                // Start-up fuel and emission costs
160
                                + sum(uFuel(unit, 'startup', fuel),
161
                                    + p_uStartup(unit, starttype, 'consumption', 'unit')  //${ not unit_investLP(unit) }  WHY THIS CONDITIONAL WOULD BE NEEDED?
162
                                        * [
163
                                            + ts_fuelPrice_(fuel, t)
164
                                            + sum(emission, // Emission taxes of startup fuel use
165
                                                + p_unitFuelEmissionCost(unit, fuel, emission)
166
167
168
169
170
171
                                              ) // END sum(emission)
                                          ] // END * p_uStartup
                                  ) // END sum(uFuel)
                              ] // END * v_startup
                      ) // END sum(starttype)
                  ) // END sum(uft_online)
172
173
$ontext
                // !!! PENDING CHANGES !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
174
                // Ramping costs
175
176
                + sum(gnuft_ramp(grid, node, unit, f, t)${  p_gnu(grid, node, unit, 'rampUpCost')
                                                            or p_gnu(grid, node, unit, 'rampDownCost')
177
178
179
180
                                                            },
                    + p_gnu(grid, node, unit, 'rampUpCost') * v_genRampChange(grid, node, unit, 'up', f, t)
                    + p_gnu(grid, node, unit, 'rampDownCost') * v_genRampChange(grid, node, unit, 'down', f, t)
                    ) // END sum(gnuft_ramp)
181
$offtext
182
                ]  // END * p_sft_probability(s,f,t)
183

184
185
        ) // END sum over msft(m, s, f, t)

186
    // Cost of energy storage change
187
    + sum(gn_state(grid, node),
188
        + sum(mft_start(m, f, t)${  p_storageValue(grid, node, t)
189
190
                                    and active(m, 'storageValue')
                                    },
191
192
            + v_state(grid, node, f, t)
                * p_storageValue(grid, node, t)
193
194
                * sum(ms(m, s)${ p_msft_probability(m, s, f, t) },
                    + p_msft_probability(m, s, f, t)
195
196
                    ) // END sum(s)
            ) // END sum(mftStart)
197
        - sum(mft_lastSteps(m, f, t)${  p_storageValue(grid, node, t)
198
199
                                        and active(m, 'storageValue')
                                        },
200
201
            + v_state(grid, node, f, t)
                * p_storageValue(grid, node, t)
202
203
                * sum(ms(m, s)${p_msft_probability(m, s, f, t)},
                    + p_msft_probability(m, s, f, t)
204
205
206
207
208
209
                    ) // END sum(s)
            ) // END sum(mftLastSteps)
        ) // END sum(gn_state)

    // Investment Costs
    + sum(t_invest(t),
210

211
        // Unit investment costs (including fixed operation and maintenance costs)
212
        + sum(gnu(grid, node, unit),
213
            + v_invest_LP(unit, t)${ unit_investLP(unit) }
214
215
216
217
218
                * p_gnu(grid, node, unit, 'unitSizeTot')
                * [
                    + p_gnu(grid, node, unit, 'invCosts') * p_gnu(grid, node, unit, 'annuity')
                    + p_gnu(grid, node, unit, 'fomCosts')
                  ]
219
            + v_invest_MIP(unit, t)${ unit_investMIP(unit) }
220
                * p_gnu(grid, node, unit, 'unitSizeTot')
221
222
223
224
                * [
                    + p_gnu(grid, node, unit, 'invCosts') * p_gnu(grid, node, unit, 'annuity')
                    + p_gnu(grid, node, unit, 'fomCosts')
                  ]
225
226
227
228
            ) // END sum(gnu)

        // Transfer link investment costs
        + sum(gn2n_directional(grid, from_node, to_node),
229
            + v_investTransfer_LP(grid, from_node, to_node, t)${ not p_gnn(grid, from_node, to_node, 'investMIP') }
230
231
232
233
234
235
                * [
                    + p_gnn(grid, from_node, to_node, 'invCost')
                        * p_gnn(grid, from_node, to_node, 'annuity')
                    + p_gnn(grid, to_node, from_node, 'invCost')
                        * p_gnn(grid, to_node, from_node, 'annuity')
                    ] // END * v_investTransfer_LP
236
            + v_investTransfer_MIP(grid, from_node, to_node, t)${ p_gnn(grid, from_node, to_node, 'investMIP') }
237
238
239
240
241
242
243
244
245
246
                * [
                    + p_gnn(grid, from_node, to_node, 'unitSize')
                        * p_gnn(grid, from_node, to_node, 'invCost')
                        * p_gnn(grid, from_node, to_node, 'annuity')
                    + p_gnn(grid, to_node, from_node, 'unitSize')
                        * p_gnn(grid, to_node, from_node, 'invCost')
                        * p_gnn(grid, to_node, from_node, 'annuity')
                    ] // END * v_investTransfer_MIP
            ) // END sum(gn2n_directional)
        ) // END sum(t_invest)
247
;
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
* --- Energy Balance ----------------------------------------------------------

q_balance(gn(grid, node), mft(m, f, t))${   not p_gn(grid, node, 'boundAll')
                                            } .. // Energy/power balance dynamics solved using implicit Euler discretization

    // The left side of the equation is the change in the state (will be zero if the node doesn't have a state)
    + p_gn(grid, node, 'energyStoredPerUnitOfState')${gn_state(grid, node)} // Unit conversion between v_state of a particular node and energy variables (defaults to 1, but can have node based values if e.g. v_state is in Kelvins and each node has a different heat storage capacity)
        * [
            + v_state(grid, node, f+df_central(f,t), t)                   // The difference between current
            - v_state(grid, node, f+df(f,t+dt(t)), t+dt(t))                     // ... and previous state of the node
            ]

    =E=

    // The right side of the equation contains all the changes converted to energy terms
    + p_stepLength(m, f, t) // Multiply with the length of the timestep to convert power into energy
        $$ifi '%rampSched%' == 'yes' / 2    // Averaging all the terms on the right side of the equation over the timestep here.
        * (
            // Self discharge out of the model boundaries
            - p_gn(grid, node, 'selfDischargeLoss')${gn_state(grid, node)}
                * [
270
                    + v_state(grid, node, f+df_central(f,t), t) // The current state of the node
271
272
273
274
275
276
277
                    $$ifi '%rampSched%' == 'yes' + v_state(grid, node, f+df(f,t+dt(t)), t+dt(t)) // and possibly averaging with the previous state of the node
                    ]

            // Energy diffusion from this node to neighbouring nodes
            - sum(to_node${gnn_state(grid, node, to_node)},
                + p_gnn(grid, node, to_node, 'diffCoeff')
                    * [
278
                        + v_state(grid, node, f+df_central(f,t), t)
279
280
281
282
283
284
285
286
                        $$ifi '%rampSched%' == 'yes' + v_state(grid, node, f+df(f,t+dt(t)), t+dt(t))
                        ]
                ) // END sum(to_node)

            // Energy diffusion from neighbouring nodes to this node
            + sum(from_node${gnn_state(grid, from_node, node)},
                + p_gnn(grid, from_node, node, 'diffCoeff')
                    * [
287
                        + v_state(grid, from_node, f+df_central(f,t), t) // Incoming diffusion based on the state of the neighbouring node
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
                        $$ifi '%rampSched%' == 'yes' + v_state(grid, from_node, f+df(f,t+dt(t)), t+dt(t)) // Ramp schedule averaging, NOTE! State and other terms use different indeces for non-ramp-schedule!
                        ]
                ) // END sum(from_node)

            // Controlled energy transfer, applies when the current node is on the left side of the connection
            - sum(node_${gn2n_directional(grid, node, node_)},
                + (1 - p_gnn(grid, node, node_, 'transferLoss')) // Reduce transfer losses
                    * [
                        + v_transfer(grid, node, node_, f, t)
                        $$ifi '%rampSched%' == 'yes' + v_transfer(grid, node, node_, f, t+dt(t)) // Ramp schedule averaging, NOTE! State and other terms use different indeces for non-ramp-schedule!
                        ]
                + p_gnn(grid, node, node_, 'transferLoss') // Add transfer losses back if transfer is from this node to another node
                    * [
                        + v_transferRightward(grid, node, node_, f, t)
                        $$ifi '%rampSched%' == 'yes' + v_transferRightward(grid, node, node_, f, t+dt(t)) // Ramp schedule averaging, NOTE! State and other terms use different indeces for non-ramp-schedule!
                        ]
                ) // END sum(node_)

            // Controlled energy transfer, applies when the current node is on the right side of the connection
            + sum(node_${gn2n_directional(grid, node_, node)},
                + [
                    + v_transfer(grid, node_, node, f, t)
                    $$ifi '%rampSched%' == 'yes' + v_transfer(grid, node_, node, f, t+dt(t)) // Ramp schedule averaging, NOTE! State and other terms use different indeces for non-ramp-schedule!
                    ]
                - p_gnn(grid, node_, node, 'transferLoss') // Reduce transfer losses if transfer is from another node to this node
                    * [
                        + v_transferRightward(grid, node_, node, f, t)
                        $$ifi '%rampSched%' == 'yes' + v_transferRightward(grid, node_, node, f, t+dt(t)) // Ramp schedule averaging, NOTE! State and other terms use different indeces for non-ramp-schedule!
                        ]
                ) // END sum(node_)

            // Interactions between the node and its units
            + sum(gnuft(grid, node, unit, f, t),
                + v_gen(grid, node, unit, f, t) // Unit energy generation and consumption
                $$ifi '%rampSched%' == 'yes' + v_gen(grid, node, unit, f, t+dt(t))
323
                )
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

            // Spilling energy out of the endogenous grids in the model
            - v_spill(grid, node, f, t)${node_spill(node)}
            $$ifi '%rampSched%' == 'yes' - v_spill(grid, node, f, t)${node_spill(node)}

            // Power inflow and outflow timeseries to/from the node
            + ts_influx_(grid, node, f, t)   // Incoming (positive) and outgoing (negative) absolute value time series
            $$ifi '%rampSched%' == 'yes' + ts_influx_(grid, node, f, t+dt(t))

            // Dummy generation variables, for feasibility purposes
            + vq_gen('increase', grid, node, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
            $$ifi '%rampSched%' == 'yes' + vq_gen('increase', grid, node, f, t+dt(t))
            - vq_gen('decrease', grid, node, f, t) // Note! When stateSlack is permitted, have to take caution with the penalties so that it will be used first
            $$ifi '%rampSched%' == 'yes' - vq_gen('decrease', grid, node, f, t+dt(t))
    ) // END * p_stepLength
339
;
340
341
342

* --- Reserve Demand ----------------------------------------------------------

343
344
q_resDemand(restypeDirectionNode(restype, up_down, node), ft(f, t)) ${   ord(t) < tSolveFirst + sum[mf(m, f), mSettings(m, 't_reserveLength')]
                                                                        and not [ restypeReleasedForRealization(restype)
345
346
                                                                                    and ft_realized(f, t)
                                                                                    ]
Topi Rasku's avatar
Topi Rasku committed
347
                                                                        } ..
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
    // Reserve provision by capable units on this node
    + sum(nuft(node, unit, f, t)${nuRescapable(restype, up_down, node, unit)},
        + v_reserve(restype, up_down, node, unit, f+df_nReserves(node, restype, f, t), t)
        ) // END sum(nuft)

    // Reserve provision to this node via transfer links
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNode(restype, up_down, node_)},
        + (1 - p_gnn(grid, node_, node, 'transferLoss') )
            * v_resTransferRightward(restype, up_down, node_, node, f+df_nReserves(node_, restype, f, t), t)             // Reserves from another node - reduces the need for reserves in the node
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNode(restype, up_down, node_)},
        + (1 - p_gnn(grid, node, node_, 'transferLoss') )
            * v_resTransferLeftward(restype, up_down, node, node_, f+df_nReserves(node_, restype, f, t), t)             // Reserves from another node - reduces the need for reserves in the node
        ) // END sum(gn2n_directional)

    =G=

    // Demand for reserves
    + ts_reserveDemand_(restype, up_down, node, f, t)${p_nReserves(node, restype, 'use_time_series')}
    + p_nReserves(node, restype, up_down)${not p_nReserves(node, restype, 'use_time_series')}

    // Reserve provisions to another nodes via transfer links
    + sum(gn2n_directional(grid, node, node_)${restypeDirectionNode(restype, up_down, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
        + v_resTransferRightward(restype, up_down, node, node_, f+df_nReserves(node, restype, f, t), t)
        ) // END sum(gn2n_directional)
    + sum(gn2n_directional(grid, node_, node)${restypeDirectionNode(restype, up_down, node_)},   // If trasferring reserves to another node, increase your own reserves by same amount
        + v_resTransferLeftward(restype, up_down, node_, node, f+df_nReserves(node, restype, f, t), t)
        ) // END sum(gn2n_directional)

    // Reserve demand feasibility dummy variables
    - vq_resDemand(restype, up_down, node, f, t)

380
;
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

* --- Maximum Downward Capacity -----------------------------------------------

q_maxDownward(m, gnuft(grid, node, unit, f, t))${   [   ord(t) < tSolveFirst + mSettings(m, 't_reserveLength') // Unit is either providing
                                                        and sum(restype, nuRescapable(restype, 'down', node, unit)) // downward reserves
                                                        ]
                                                    // NOTE!!! Could be better to form a gnuft_reserves subset?
                                                    or [ // the unit has an online variable
                                                        uft_online(unit, f, t)
                                                        and [
                                                            (unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeGen')) // generators with a min. load
                                                            or p_gnu(grid, node, unit, 'maxCons') // or consuming units with an online variable
                                                            ]
                                                        ] // END or
                                                    or [ // consuming units with investment possibility
                                                        gnu_input(grid, node, unit)
                                                        and [unit_investLP(unit) or unit_investMIP(unit)]
                                                        ]
                                                    } ..

    // Energy generation/consumption
    + v_gen(grid, node, unit, f, t)

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_, node_, unit),
        + p_gnu(grid_, node_, unit, 'cV')
            * v_gen(grid_, node_, unit, f, t)
        ) // END sum(gngnu_constrainedOutputRatio)

    // Downward reserve participation
    - sum(nuRescapable(restype, 'down', node, unit)${ord(t) < tSolveFirst + mSettings(m, 't_reserveLength')},
        + v_reserve(restype, 'down', node, unit, f+df_nReserves(node, restype, f, t), t) // (v_reserve can be used only if the unit is capable of providing a particular reserve)
        ) // END sum(nuRescapable)

    =G= // Must be greater than minimum load or maximum consumption  (units with min-load and both generation and consumption are not allowed)

    // Generation units, greater than minload
    + p_gnu(grid, node, unit, 'unitSizeGen')
419
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
420
421
422
423
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [ // Online variables should only be generated for units with restrictions
424
425
            + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)} // LP online variant
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)} // MIP online variant
426
427
            ] // END v_online

428
429
430
431
432
433
434
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(t_$(ord(t_) > ord(t) + p_ut_startup(unit, t) and ord(t_) <= ord(t) and uft_online(unit, f, t_)),
            + sum(unitStarttype(unit, starttype),
                + v_startup(unit, starttype, f, t_) * sum(t__${ord(t__) = ord(t) - ord(t_) + 1}, p_ut_runUp(unit, t__))  //t+dtt(t,t_)
            )
          )$p_u_runUpTimeIntervals(unit)

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    // Consuming units, greater than maxCons
    // Available capacity restrictions
    - p_unit(unit, 'availability')
        * [
            // Capacity factors for flow units
            + sum(flow${flowUnit(flow, unit)},
                + ts_cf_(flow, node, f, t)
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxCons')${not uft_online(unit, f, t)} // Use initial maximum if no online variables
            + p_gnu(grid, node, unit, 'unitSizeCons')
                * [
450
                    // Capacity online
451
452
                    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
                    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
453
454
455
456
457
458
459
460

                    // Investments to additional non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f, t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)} // NOTE! v_invest_LP also for consuming units is positive
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)} // NOTE! v_invest_MIP also for consuming units is positive
                        ) // END sum(t_invest)
461
462
                    ] // END * p_gnu(unitSizeCons)
            ] // END * p_unit(availability)
463
;
464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
q_noReserveInRunUp(m, gnuft(grid, node, unit, f, t))$[   ord(t) < tSolveFirst + mSettings(m, 't_reserveLength') // Unit is either providing
                                                    and sum(restype, nuRescapable(restype, 'up', node, unit)) // upward reserves
                                                    and p_u_runUpTimeIntervals(unit)   // unit has run up constraint
                                                    ]..
    v_gen(grid, node, unit, f, t)
    =G=
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(t_$(ord(t_) > ord(t) + p_ut_startup(unit, t) and ord(t_) <= ord(t) and uft_online(unit, f, t_)),
            + sum(unitStarttype(unit, starttype),
                + v_startup(unit, starttype, f, t_) * sum(t__${ord(t__) = ord(t) - ord(t_) + 1}, p_ut_runUp(unit, t__))  //t+dtt(t,t_)
            )
          )$p_u_runUpTimeIntervals(unit)

$ontext
    p_nuReserves(node, unit, resType, 'up')
      * (
          + p_unit(unit, 'unitCount')
          + sum(t_invest(t_)${ ord(t_)<=ord(t) },
               + v_invest_LP(unit, t_)${unit_investLP(unit)} // NOTE! v_invest_LP also for consuming units is positive
               + v_invest_MIP(unit, t_)${unit_investMIP(unit)} // NOTE! v_invest_MIP also for consuming units is positive
            ) // END sum(t_invest)
          - sum(t_$(ord(t_) >= ord(t) + p_ut_startup(unit, t) and ord(t_) < ord(t) and uft_online(unit, f, t_)),
              + sum(unitStarttype(unit, starttype),
                  + v_startup(unit, starttype, f, t_)
                )
            )
        ) * p_gnu(grid, node, unit, 'unitSizeGen')
$offtext
;

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
* --- Maximum Upwards Capacity ------------------------------------------------

q_maxUpward(m, gnuft(grid, node, unit, f, t))${ [   ord(t) < tSolveFirst + mSettings(m, 't_reserveLength') // Unit is either providing
                                                    and sum(restype, nuRescapable(restype, 'up', node, unit)) // upward reserves
                                                    ]
                                                or [
                                                    uft_online(unit, f, t) // or the unit has an online variable
                                                        and [
                                                            [unit_minLoad(unit) and p_gnu(grid, node, unit, 'unitSizeCons')] // consuming units with min_load
                                                            or [p_gnu(grid, node, unit, 'maxGen')]                          // generators with an online variable
                                                            ]
                                                    ]
                                                or [
                                                    gnu_output(grid, node, unit) // generators with investment possibility
                                                    and (unit_investLP(unit) or unit_investMIP(unit))
                                                    ]
                                                }..
    // Energy generation/consumption
    + v_gen(grid, node, unit, f, t)

    // Considering output constraints (e.g. cV line)
    + sum(gngnu_constrainedOutputRatio(grid, node, grid_output, node_, unit),
        + p_gnu(grid_output, node_, unit, 'cV')
            * v_gen(grid_output, node_, unit, f, t)
        ) // END sum(gngnu_constrainedOutputRatio)

    // Upwards reserve participation
    + sum(nuRescapable(restype, 'up', node, unit)${ord(t) < tSolveFirst + mSettings(m, 't_reserveLength')},
        + v_reserve(restype, 'up', node, unit, f+df_nReserves(node, restype, f, t), t)
        ) // END sum(nuRescapable)

    =L= // must be less than available/online capacity

    // Consuming units
    + p_gnu(grid, node, unit, 'unitSizeCons')
530
        * sum(suft(effGroup, unit, f, t), // Uses the minimum 'lb' for the current efficiency approximation
531
532
533
534
            + p_effGroupUnit(effGroup, unit, 'lb')${not ts_effGroupUnit(effGroup, unit, 'lb', f, t)}
            + ts_effGroupUnit(effGroup, unit, 'lb', f, t)
            ) // END sum(effGroup)
        * [
535
536
            + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)} // Consuming units are restricted by their min. load (consuming is negative)
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
            ] // END * p_gnu(unitSizeCons)

    // Generation units
    // Available capacity restrictions
    + p_unit(unit, 'availability') // Generation units are restricted by their (available) capacity
        * [
            // Capacity factor for flow units
            + sum(flow${flowUnit(flow, unit)},
                + ts_cf_(flow, node, f, t)
                ) // END sum(flow)
            + 1${not unit_flow(unit)}
            ] // END * p_unit(availability)
        * [
            // Online capacity restriction
            + p_gnu(grid, node, unit, 'maxGen')${not uft_online(unit, f, t)} // Use initial maxGen if no online variables
            + p_gnu(grid, node, unit, 'unitSizeGen')
                * [
554
                    // Capacity online
555
556
                    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f ,t)}
                    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
557
558
559
560
561
562
563
564

                    // Investments to non-online capacity
                    + sum(t_invest(t_)${    ord(t_)<=ord(t)
                                            and not uft_online(unit, f ,t)
                                            },
                        + v_invest_LP(unit, t_)${unit_investLP(unit)}
                        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
                        ) // END sum(t_invest)
565
566
                    ] // END * p_gnu(unitSizeGen)
            ] // END * p_unit(availability)
567
568
569
570
571
572
573
574
575
576
577
578
579

    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(t_$(ord(t_) > ord(t) + p_ut_startup(unit, t) and ord(t_) < ord(t) and uft_online(unit, f, t_)),
            + sum(unitStarttype(unit, starttype),
                + v_startup(unit, starttype, f, t_) * sum(t__${ord(t__) = ord(t) - ord(t_) + 1}, p_ut_runUp(unit, t__))  //t+dtt(t,t_)
              )
          )$p_u_runUpTimeIntervals(unit)
    + p_gnu(grid, node, unit, 'unitSizeGen')
        * sum(t_$(ord(t_) = ord(t) and uft_online(unit, f, t_)),
            + sum(unitStarttype(unit, starttype),
                + v_startup(unit, starttype, f, t_) * p_u_maxRampInLastRunUpInterval(unit)  //t+dtt(t,t_)
              )
          )$p_u_runUpTimeIntervals(unit)
580
;
581
582
583

* --- Unit Startup and Shutdown -----------------------------------------------

584
q_startshut(m, uft_online(unit, f, t))${ ord(t) + dt(t) > mSettings(m, 't_start') } ..
585
    // Units currently online
586
587
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
588
589

    // Units previously online
590
591
    - v_online_LP(unit, f+df(f,t+dt(t)), t+dt(t))${ uft_onlineLP(unit, f+df(f,t+dt(t)), t+dt(t)) } // This reaches to tFirstSolve when dt = -1
    - v_online_MIP(unit, f+df(f,t+dt(t)), t+dt(t))${ uft_onlineMIP(unit, f+df(f,t+dt(t)), t+dt(t)) }
592
593

    // Unit online history (solve initial value), required because uft_online doesn't extend to before active modelling
594
    - r_online(unit, f+df(f,t+dt(t)), t+dt(t))${    not uft_onlineLP(unit, f+df(f,t+dt(t)), t+dt(t))
595
596
                                                    and not uft_onlineMIP(unit, f+df(f,t+dt(t)), t+dt(t))
                                                    }
597

598
599
    =E=

600
    // Unit startup and shutdown
601
    + sum(unitStarttype(unit, starttype),
602
        + v_startup(unit, starttype, f+df_central(f,t+p_ut_startup(unit,t)), t+p_ut_startup(unit, t))
603
604
        ) // END sum(starttype)
    - v_shutdown(unit, f, t)
605
;
606

607

608
*--- Startup Type -------------------------------------------------------------
609
// !!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
610
611
612
// This formulation doesn't work as intended when unitCount > 1, as one recent
// shutdown allows for multiple hot/warm startups on subsequent time steps.
// Pending changes.
613

614
q_startuptype(m, starttypeConstrained(starttype), uft_online(unit, f, t))${ unitStarttype(unit, starttype) } ..
615
616

    // Startup type
617
    + v_startup(unit, starttype, f+df_central(f,t+p_ut_startup(unit,t)), t+p_ut_startup(unit, t))
618
619
620
621

    =L=

    // Subunit shutdowns within special startup timeframe
622
    + sum(counter${dt_starttypeUnitCounter(starttype, unit, counter)},
623
        + v_shutdown(unit, f+df(f,t+dt_starttypeUnitCounter(starttype, unit, counter)), t+dt_starttypeUnitCounter(starttype, unit, counter))
624
    ) // END sum(counter)
625
;
626

627

628
629
*--- Online Limits with Startup Type Constraints and Investments --------------

630
q_onlineLimit(m, uft_online(unit, f, t))${  p_unit(unit, 'minShutdownHours')
631
632
633
634
                                            or unit_investLP(unit)
                                            or unit_investMIP(unit)
                                            } ..
    // Online variables
635
636
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f ,t)}
637
638
639
640
641
642
643

    =L=

    // Number of existing units
    + p_unit(unit, 'unitCount')

    // Number of units unable to start due to restrictions
644
645
    - sum(counter${dt_downtimeUnitCounter(unit, counter)},
        + v_shutdown(unit, f+df(f,t+dt_downtimeUnitCounter(unit, counter)), t+dt_downtimeUnitCounter(unit, counter))
646
    ) // END sum(counter)
647
648
649

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
650
651
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
652
653
654
        ) // END sum(t_invest)
;

655
656
657
658
*--- Both q_offlineAfterShutdown and q_onlineOnStartup work when there is only one unit.
*    These equations prohibit single units turning on and off at the same time step.
*    Unfortunately there seems to be no way to prohibit this when unit count is > 1.
*    (it shouldn't be worthwhile anyway if there is a startup cost, but it can fall within the solution gap).
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
q_onlineOnStartUp(uft_online(unit, f, t))${sum(starttype, unitStarttype(unit, starttype))}..

    // Units currently online
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}

    =G=

    + sum(unitStarttype(unit, starttype),
        + v_startup(unit, starttype, f+df(f,t+p_ut_startUp(unit, t)), t+p_ut_startUp(unit, t))
      ) // END sum(starttype)
;

q_offlineAfterShutdown(uft_online(unit, f, t))${sum(starttype, unitStarttype(unit, starttype))}..

674
675
676
677
678
    // Number of existing units
    + p_unit(unit, 'unitCount')

    // Investments into units
    + sum(t_invest(t_)${ord(t_)<=ord(t)},
679
680
        + v_invest_LP(unit, t_)${unit_investLP(unit)}
        + v_invest_MIP(unit, t_)${unit_investMIP(unit)}
681
682
        ) // END sum(t_invest)

683
684
685
686
687
688
689
690
691
    // Units currently online
    - v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    - v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}

    =G=

    + v_shutdown(unit, f, t)
;

692
693
*--- Minimum Unit Uptime ------------------------------------------------------

694
q_onlineMinUptime(m, uft_online(unit, f, t))${  p_unit(unit, 'minOperationHours')
695
696
697
                                                } ..

    // Units currently online
698
699
    + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
700
701
702
703

    =G=

    // Units that have minimum operation time requirements active
704
    + sum(counter${dt_uptimeUnitCounter(unit, counter)},
705
        + sum(unitStarttype(unit, starttype),
706
            + v_startup(unit, starttype, f+df(f,t+(dt_uptimeUnitCounter(unit, counter)+p_ut_startUp(unit, t))), t+(dt_uptimeUnitCounter(unit, counter)+p_ut_startUp(unit, t)))
707
            ) // END sum(starttype)
708
    ) // END sum(counter)
709
710
;

711
* --- Ramp Constraints --------------------------------------------------------
712
q_genRamp(m, gn(grid, node), s, uft(unit, f, t))${  gnuft_ramp(grid, node, unit, f, t)
713
714
715
716
                                                    and ord(t) > msStart(m, s)
                                                    and ord(t) <= msEnd(m, s)
                                                    } ..

717
718
    + v_genRamp(grid, node, unit, f, t)
        / p_stepLength(m, f, t)
719
720
    =E=
    // Change in generation over the time step
721
    + v_gen(grid, node, unit, f, t)
722
    - v_gen(grid, node, unit, f+df(f,t), t+dt(t))
723
;
724

725
* --- Ramp Up Limits ----------------------------------------------------------
726
q_rampUpLimit(m, gn(grid, node), s, unit, ft(f, t))${ gnuft_ramp(grid, node, unit, f, t)
727
728
729
730
                                                   and ord(t) > msStart(m, s)
                                                   and msft(m, s, f, t)
                                                   and p_gnu(grid, node, unit, 'maxRampUp')
                                                   } ..
731
732
  + v_genRamp(grid, node, unit, f, t)
  + sum(resType, v_reserve(resType, 'up', node, unit, f, t))
733
  =L=
734
    // Ramping capability of units without an online variable in the previous and in the current time steps
735
  + (
736
737
      + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f, t)}
      + sum(t_$(t_invest(t_) and ord(t_)<=ord(t)),
738
739
740
          + v_invest_LP(unit, t_)${not uft_onlineLP(unit, f+df(f,t), t+dt(t)) and unit_investLP(unit)}
              * p_gnu(grid, node, unit, 'unitSizeTot')
          + v_invest_MIP(unit, t_)${not uft_onlineMIP(unit, f+df(f,t), t+dt(t)) and unit_investMIP(unit)}
741
              * p_gnu(grid, node, unit, 'unitSizeTot')
742
        )
Juha Kiviluoma's avatar
Juha Kiviluoma committed
743
    )
744
      * p_gnu(grid, node, unit, 'maxRampUp')
745
      * 60   // Unit conversion from [p.u./min] to [p.u./h]
746
    // Ramping capability of units with an online variable in the current time step
747
  + (
748
749
750
      + v_online_LP(unit, f, t)${uft_onlineLP(unit, f, t)}
      + v_online_MIP(unit, f, t)${uft_onlineMIP(unit, f, t)}
      - v_shutdown(unit, f, t)${uft_online(unit, f, t)}
751
    )
752
      * p_gnu(grid, node, unit, 'unitSizeTot')
753
      * p_gnu(grid, node, unit, 'maxRampUp')
754
      * 60   // Unit conversion from [p.u./min] to [p.u./h]
755
756
757
758
// Note: This constraint does not limit ramping properly for example if online subunits are
// producing at full capacity (= not possible to ramp up) and more subunits are started up.
// Take this into account in q_maxUpward or in another equation?:
// v_gen =L= (v_online(t-1) - v_shutdown(t-1)) * unitSize + v_startup(t-1) * unitSize * minLoad
759
;
760

761
762
763
764
765
* --- Ramp Down Limits --------------------------------------------------------
q_rampDownLimit(gn(grid, node), m, s, unit, ft(f, t))${ gnuft_ramp(grid, node, unit, f, t)
                                                     and ord(t) > msStart(m, s)
                                                     and msft(m, s, f, t)
                                                     and p_gnu(grid, node, unit, 'maxRampDown')
766
                                                     and (uft_online(unit, f, t)
767
768
769
                                                             or unit_investLP(unit)
                                                             or unit_investMIP(unit))
                                                     } ..
770
771
  + v_genRamp(grid, node, unit, f, t)
  + sum(resType, v_reserve(resType, 'down', node, unit, f, t))
772
773
774
  =G=
    // Ramping capability of units without online variable
  - (
775
776
      + ( p_gnu(grid, node, unit, 'maxGen') + p_gnu(grid, node, unit, 'maxCons') )${not uft_online(unit, f+df(f,t), t+dt(t))}
      + sum(t_$(t_invest(t_) and ord(t_)<=ord(t)),
777
778
779
          + v_invest_LP(unit, t_)${not uft_onlineLP(unit, f, t_) and unit_investLP(unit)}
              * p_gnu(grid, node, unit, 'unitSizeTot')
          + v_invest_MIP(unit, t_)${not uft_onlineMIP(unit, f, t_) and unit_investMIP(unit)}
780
              * p_gnu(grid, node, unit, 'unitSizeTot')
781
        )
Juha Kiviluoma's avatar
Juha Kiviluoma committed
782
    )
783
      * p_gnu(grid, node, unit, 'maxRampDown')
784
      * 60   // Unit conversion from [p.u./min] to [p.u./h]
785
786
    // Ramping capability of units that were online both in the previous time step and the current time step
  - (
787
788
789
      + v_online_LP(unit, f, t)${uft_online(unit, f, t)}
      + v_online_MIP(unit, f, t)${uft_online(unit, f, t)}
      - v_shutdown(unit, f, t)${uft_online(unit, f, t)}
Juha Kiviluoma's avatar
Juha Kiviluoma committed
790
    )
791
      * p_gnu(grid, node, unit, 'unitSizeTot')
792
      * p_gnu(grid, node, unit, 'maxRampDown')
793
794
795
796
      * 60   // Unit conversion from [p.u./min] to [p.u./h]
;


797
798
799
800
801
802
803
804
805
806
807
808
809
810
* --- Fixed Output Ratio ------------------------------------------------------

q_outputRatioFixed(gngnu_fixedOutputRatio(grid, node, grid_, node_, unit), ft(f, t))${  uft(unit, f, t)
                                                                                        } ..

    // Generation in grid
    + v_gen(grid, node, unit, f, t)
        / p_gnu(grid, node, unit, 'cB')

    =E=

    // Generation in grid_
    + v_gen(grid_, node_, unit, f, t)
        / p_gnu(grid_, node_, unit, 'cB')
811
;
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

* --- Constrained Output Ratio ------------------------------------------------

q_outputRatioConstrained(gngnu_constrainedOutputRatio(grid, node, grid_, node_, unit), ft(f, t))${  uft(unit, f, t)
                                                                                                    } ..

    // Generation in grid
    + v_gen(grid, node, unit, f, t)
        / p_gnu(grid, node, unit, 'cB')

    =G=

    // Generation in grid_
    + v_gen(grid_, node_, unit, f, t)
        / p_gnu(grid_, node_, unit, 'cB')
Juha Kiviluoma's avatar
Juha Kiviluoma committed
827
;
828
829
830

* --- Direct Input-Output Conversion ------------------------------------------

831
q_conversionDirectInputOutput(suft(effDirect(effGroup), unit, f, t)) ..
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

    // Sum over endogenous energy inputs
    - sum(gnu_input(grid, node, unit),
        + v_gen(grid, node, unit, f, t)
        ) // END sum(gnu_input)

    // Sum over fuel energy inputs
    + sum(uFuel(unit, 'main', fuel),
        + v_fuelUse(fuel, unit, f, t)
        ) // END sum(uFuel)

    =E=

    // Sum over energy outputs
    + sum(gnu_output(grid, node, unit),
        + v_gen(grid, node, unit, f, t)
            * [ // Heat rate
849
                + p_effUnit(effGroup, unit, effGroup, 'slope')${ not ts_effUnit(effGroup, unit, effGroup, 'slope', f, t) }
850
                + ts_effUnit(effGroup, unit, effGroup, 'slope', f, t)
851
852
853
                ] // END * v_gen
        ) // END sum(gnu_output)

854
    // Consumption of keeping units online (no-load fuel use)
855
856
857
858
    + sum(gnu_output(grid, node, unit),
        + p_gnu(grid, node, unit, 'unitSizeGen')
        ) // END sum(gnu_output)
        * [
859
860
            + v_online_LP(unit, f+df_central(f,t), t)${uft_onlineLP(unit, f, t)}
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
861
862
            ] // END * sum(gnu_output)
        * [
863
864
            + p_effGroupUnit(effGroup, unit, 'section')${not ts_effUnit(effGroup, unit, effDirect, 'section', f, t)}
            + ts_effUnit(effGroup, unit, effGroup, 'section', f, t)
865
            ] // END * sum(gnu_output)
866
;
867
868
869

* --- SOS2 Efficiency Approximation -------------------------------------------

870
871
872
873
874
875
876
877
878
879
880
881
q_conversionSOS2InputIntermediate(suft(effLambda(effGroup), unit, f, t)) ..

    // Sum over endogenous energy inputs
    - sum(gnu_input(grid, node, unit),
        + v_gen(grid, node, unit, f, t)
        ) // END sum(gnu_input)

    // Sum over fuel energy inputs
    + sum(uFuel(unit, 'main', fuel),
        + v_fuelUse(fuel, unit, f, t)
        ) // END sum(uFuel)

882
    =G=
883
884
885
886
887

    // Sum over the endogenous outputs of the unit
    + sum(gnu_output(grid, node, unit), p_gnu(grid, node, unit, 'unitSizeGen'))
        * [
            // Consumption of generation
888
            + sum(effGroupSelectorUnit(effGroup, unit, effSelector),
889
890
891
892
893
894
895
896
897
898
899
900
                + v_sos2(unit, f, t, effSelector)
                    * [ // Operation points convert the v_sos2 variables into share of capacity used for generation
                        + p_effUnit(effGroup, unit, effSelector, 'op')${not ts_effUnit(effGroup, unit, effSelector, 'op', f, t)}
                        + ts_effUnit(effGroup, unit, effSelector, 'op', f, t)
                        ] // END * v_sos2
                    * [ // Heat rate
                        + p_effUnit(effGroup, unit, effSelector, 'slope')${not ts_effUnit(effGroup, unit, effSelector, 'slope', f, t)}
                        + ts_effUnit(effGroup, unit, effSelector, 'slope', f, t)
                        ] // END * v_sos2
                ) // END sum(effSelector)

            // Consumption of keeping units online
901
            + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
902
903
                * p_effGroupUnit(effGroup, unit, 'section')
            ] // END * sum(gnu_output)
904
;
905
906
907
908
909
910

* --- SOS 2 Efficiency Approximation Online Variables -------------------------

q_conversionSOS2Constraint(suft(effLambda(effGroup), unit, f, t)) ..

    // Total value of the v_sos2 equals the number of online units
911
    + sum(effGroupSelectorUnit(effGroup, unit, effSelector),
912
913
914
915
916
917
        + v_sos2(unit, f, t, effSelector)
        ) // END sum(effSelector)

    =E=

    // Number of units online
918
    + v_online_MIP(unit, f+df_central(f,t), t)${uft_onlineMIP(unit, f, t)}
919
;
920
921
922
923
924
925
926
927

* --- SOS 2 Efficiency Approximation Output Generation ------------------------

q_conversionSOS2IntermediateOutput(suft(effLambda(effGroup), unit, f, t)) ..

    // Endogenous energy output
    + sum(gnu_output(grid, node, unit),
        + p_gnu(grid, node, unit, 'unitSizeGen')
928
      ) // END sum(gnu_output)
929
        * sum(effGroupSelectorUnit(effGroup, unit, effSelector),
930
931
932
933
            + v_sos2(unit, f, t, effSelector)
            * [ // Operation points convert v_sos2 into share of capacity used for generation
                + p_effUnit(effGroup, unit, effSelector, 'op')${not ts_effUnit(effGroup, unit, effSelector, 'op', f, t)}
                + ts_effUnit(effGroup, unit, effSelector, 'op', f, t)
934
935
              ] // END * v_sos2
          ) // END sum(effSelector)
936

937
938
939
940
941
942
943
944
    + sum(gnu_output(grid, node, unit)$p_u_runUpTimeIntervals(unit),
        + p_gnu(grid, node, unit, 'unitSizeGen')
      ) // END sum(gnu_output)
        * sum(t_$(ord(t_) > ord(t) + p_ut_startup(unit, t) and ord(t_) <= ord(t) and uft_online(unit, f, t_)),
            + sum(unitStarttype(unit, starttype),
                + v_startup(unit, starttype, f, t_) * sum(t__${ord(t__) = ord(t) - ord(t_) + 1}, p_ut_runUp(unit, t__))  //t+dtt(t,t_)
            )
          )
945
946
947
948
949
950
    =E=

    // Energy output into v_gen
    + sum(gnu_output(grid, node, unit),
        + v_gen(grid, node, unit, f, t)
        ) // END sum(gnu_output)
Juha Kiviluoma's avatar
Juha Kiviluoma committed
951
;
952

953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
* --- Total Transfer Limits ---------------------------------------------------

q_transfer(gn2n_directional(grid, node, node_), ft(f, t)) ..

    // Rightward + Leftward
    + v_transferRightward(grid, node, node_, f, t)
    - v_transferLeftward(grid, node, node_, f, t)

    =E=

    // = Total Transfer
    + v_transfer(grid, node, node_, f, t)
;

* --- Rightward Transfer Limits -----------------------------------------------

q_transferRightwardLimit(gn2n_directional(grid, node, node_), ft(f, t))${   p_gnn(grid, node, node_, 'transferCapInvLimit')
                                                                            } ..
    // Rightward transfer
    + v_transferRightward(grid, node, node_, f, t)

    =L=

    // Existing transfer capacity
    + p_gnn(grid, node, node_, 'transferCap')

    // Investments into additional transfer capacity
    + sum(t_invest(t_)$(ord(t_)<=ord(t)),
        + v_investTransfer_LP(grid, node, node_, t_)
        + v_investTransfer_MIP(grid, node, node_, t_) * p_gnn(grid, node, node_, 'unitSize')
        ) // END sum(t_invest)
;

* --- Leftward Transfer Limits ------------------------------------------------

q_transferLeftwardLimit(gn2n_directional(grid, node, node_), ft(f, t))${    p_gnn(grid, node, node_, 'transferCapInvLimit')
                                                                            } ..

    // Leftward transfer
    + v_transferLeftward(grid, node, node_, f, t)

    =L=

    // Existing transfer capacity
    + p_gnn(grid, node_, node, 'transferCap')

    // Investments into additional transfer capacity
    + sum(t_invest(t_)${ord(t_)<=ord(t)},